Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1985_19_3_a22, author = {M. V. Novitskii}, title = {Reconstruction of the function of the rotation number for the {Schr\"odinger} operator with almost-periodic potential from a countable set of polynomial invariance laws}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {90--91}, publisher = {mathdoc}, volume = {19}, number = {3}, year = {1985}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1985_19_3_a22/} }
TY - JOUR AU - M. V. Novitskii TI - Reconstruction of the function of the rotation number for the Schr\"odinger operator with almost-periodic potential from a countable set of polynomial invariance laws JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1985 SP - 90 EP - 91 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_1985_19_3_a22/ LA - ru ID - FAA_1985_19_3_a22 ER -
%0 Journal Article %A M. V. Novitskii %T Reconstruction of the function of the rotation number for the Schr\"odinger operator with almost-periodic potential from a countable set of polynomial invariance laws %J Funkcionalʹnyj analiz i ego priloženiâ %D 1985 %P 90-91 %V 19 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_1985_19_3_a22/ %G ru %F FAA_1985_19_3_a22
M. V. Novitskii. Reconstruction of the function of the rotation number for the Schr\"odinger operator with almost-periodic potential from a countable set of polynomial invariance laws. Funkcionalʹnyj analiz i ego priloženiâ, Tome 19 (1985) no. 3, pp. 90-91. http://geodesic.mathdoc.fr/item/FAA_1985_19_3_a22/
[1] Johnson R., Moser J., Comm. Math. Phys., 84 (1982), 403–438 | DOI | MR | Zbl
[2] McKean H.P., Van Moerbeke P., Invent. Math., 30 (1975), 217–274 | DOI | MR | Zbl
[3] Mandelbroit S., Primykayuschie ryady. Regulyarizatsiya posledovatelnostei, IL, M., 1955
[4] Marchenko V.A., Ostrovskii I.V., Mat. sb., 97:4 (1975), 540–606 | MR | Zbl