Reconstruction of the function of the rotation number for the Schr\"odinger operator with almost-periodic potential from a countable set of polynomial invariance laws
Funkcionalʹnyj analiz i ego priloženiâ, Tome 19 (1985) no. 3, pp. 90-91
Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1985_19_3_a22,
author = {M. V. Novitskii},
title = {Reconstruction of the function of the rotation number for the {Schr\"odinger} operator with almost-periodic potential from a countable set of polynomial invariance laws},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {90--91},
publisher = {mathdoc},
volume = {19},
number = {3},
year = {1985},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_1985_19_3_a22/}
}
TY - JOUR AU - M. V. Novitskii TI - Reconstruction of the function of the rotation number for the Schr\"odinger operator with almost-periodic potential from a countable set of polynomial invariance laws JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1985 SP - 90 EP - 91 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_1985_19_3_a22/ LA - ru ID - FAA_1985_19_3_a22 ER -
%0 Journal Article %A M. V. Novitskii %T Reconstruction of the function of the rotation number for the Schr\"odinger operator with almost-periodic potential from a countable set of polynomial invariance laws %J Funkcionalʹnyj analiz i ego priloženiâ %D 1985 %P 90-91 %V 19 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_1985_19_3_a22/ %G ru %F FAA_1985_19_3_a22
M. V. Novitskii. Reconstruction of the function of the rotation number for the Schr\"odinger operator with almost-periodic potential from a countable set of polynomial invariance laws. Funkcionalʹnyj analiz i ego priloženiâ, Tome 19 (1985) no. 3, pp. 90-91. http://geodesic.mathdoc.fr/item/FAA_1985_19_3_a22/