Action of the Liouville equation is a generating function for the accessory parameters and the potential of the Weil--Petersson metric on the Teichm\"uller space
Funkcionalʹnyj analiz i ego priloženiâ, Tome 19 (1985) no. 3, pp. 67-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1985_19_3_a10,
     author = {P. G. Zograf and L. A. Takhtadzhyan},
     title = {Action of the {Liouville} equation is a generating function for the accessory parameters and the potential of the {Weil--Petersson} metric on the {Teichm\"uller} space},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {67--68},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1985_19_3_a10/}
}
TY  - JOUR
AU  - P. G. Zograf
AU  - L. A. Takhtadzhyan
TI  - Action of the Liouville equation is a generating function for the accessory parameters and the potential of the Weil--Petersson metric on the Teichm\"uller space
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1985
SP  - 67
EP  - 68
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1985_19_3_a10/
LA  - ru
ID  - FAA_1985_19_3_a10
ER  - 
%0 Journal Article
%A P. G. Zograf
%A L. A. Takhtadzhyan
%T Action of the Liouville equation is a generating function for the accessory parameters and the potential of the Weil--Petersson metric on the Teichm\"uller space
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1985
%P 67-68
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1985_19_3_a10/
%G ru
%F FAA_1985_19_3_a10
P. G. Zograf; L. A. Takhtadzhyan. Action of the Liouville equation is a generating function for the accessory parameters and the potential of the Weil--Petersson metric on the Teichm\"uller space. Funkcionalʹnyj analiz i ego priloženiâ, Tome 19 (1985) no. 3, pp. 67-68. http://geodesic.mathdoc.fr/item/FAA_1985_19_3_a10/

[1] Poincare H., Acta Math., 4 (1884), 201–312 | DOI | MR

[2] Poincare H., Journal de mathématiques, ser. 5, 1898, no. 4, 137–230 | Zbl

[3] Hejhal D., Bull. Amer. Math. Soc., 84:3 (1978), 339–376 | DOI | MR | Zbl

[4] Fay J.-J., Reine Angew. Math., 294, 143–203 | MR | Zbl

[5] Venkov A.B., Zap. nauch. sem. LOMI, 129, 1983, 17–29 | MR | Zbl

[6] Polyakov A.M., Phys. Lett., 103B:3 (1981), 207–210 | DOI | MR

[7] Belavin A.A., Polyakov A.M., Zamolodchikov A.B., Nucl. Phys., B241 (1984), 333–362 | DOI | MR

[8] Weil A., Sém. Bourbaki, 168, 1958 | Zbl

[9] Ahlfors L., Ann. Math., 74:1 (1961), 171–191 | DOI | MR | Zbl