Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1985_19_1_a2, author = {A. D. Vainshtein and B. Z. Shapiro}, title = {Higher-dimensional analogs of the theorems of {Newton} and {Ivory}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {20--24}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {1985}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1985_19_1_a2/} }
TY - JOUR AU - A. D. Vainshtein AU - B. Z. Shapiro TI - Higher-dimensional analogs of the theorems of Newton and Ivory JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1985 SP - 20 EP - 24 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_1985_19_1_a2/ LA - ru ID - FAA_1985_19_1_a2 ER -
A. D. Vainshtein; B. Z. Shapiro. Higher-dimensional analogs of the theorems of Newton and Ivory. Funkcionalʹnyj analiz i ego priloženiâ, Tome 19 (1985) no. 1, pp. 20-24. http://geodesic.mathdoc.fr/item/FAA_1985_19_1_a2/
[1] Nyuton I., Matematicheskie nachala naturalnoi filosofii, Izd. AN SSSR, M.; L., 1936 | MR
[2] Ivory J., “On the attractions of homogeneous ellipsoids”, Philos. Trans., 99 (1809), 345–372 | DOI
[3] Arnold V.I., “Magnitnye analogi teorem Nyutona i Aivori”, UMN, 38:5 (1983), 145–146
[4] Arnold V.I., Some algebro-geometrical aspects of the Newton attraction theory, Arithmetic and geometry, 2, Geometry, Birkhäuser, 1983 | MR
[5] Arnold V.I., “O nyutonovskom potentsiale giperbolicheskikh sloev”, Tr. Tbilisskogo un-ta, ser. mat. mekh., astr., 232–233:13–14 (1982), 23–29 | MR | Zbl
[6] Arnold V.I., “O nyutonovskom prityazhenii skoplenii pylevidnykh chastits”, UMN, 37:4 (1982), 125
[7] De Ram Zh., Differentsiruemye mnogoobraziya, IL, M., 1956
[8] Yakobi K., Lektsii po dinamike, Gostekhizdat, M.; L., 1936
[9] Muratov R.3., Potentsialy ellipsoida, Atomizdat, M., 1976