Existence and uniqueness of extremal solutions of the Riccati equation, and symplectic geometry
Funkcionalʹnyj analiz i ego priloženiâ, Tome 19 (1985) no. 1, pp. 85-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1985_19_1_a19,
     author = {L. E. Faibusovich},
     title = {Existence and uniqueness of extremal solutions of the {Riccati} equation, and symplectic geometry},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {85--86},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1985_19_1_a19/}
}
TY  - JOUR
AU  - L. E. Faibusovich
TI  - Existence and uniqueness of extremal solutions of the Riccati equation, and symplectic geometry
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1985
SP  - 85
EP  - 86
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1985_19_1_a19/
LA  - ru
ID  - FAA_1985_19_1_a19
ER  - 
%0 Journal Article
%A L. E. Faibusovich
%T Existence and uniqueness of extremal solutions of the Riccati equation, and symplectic geometry
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1985
%P 85-86
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1985_19_1_a19/
%G ru
%F FAA_1985_19_1_a19
L. E. Faibusovich. Existence and uniqueness of extremal solutions of the Riccati equation, and symplectic geometry. Funkcionalʹnyj analiz i ego priloženiâ, Tome 19 (1985) no. 1, pp. 85-86. http://geodesic.mathdoc.fr/item/FAA_1985_19_1_a19/

[1] Uonem M., Lineinye mnogomernye sistemy upravleniya, Nauka, M., 1980 | MR

[2] Arnold V.I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR

[3] Givental A.B., Funkts. analiz, 17:3 (1983), 73–74 | MR | Zbl

[4] Churilov A.N., Sib. mat. zh., 1979, no. 4, 854–867 | MR

[5] Lancaster P., Rodman L., Int. J. Contr., 32 (1980), 285–309 | DOI | MR | Zbl