Existence and uniqueness of extremal solutions of the Riccati equation, and symplectic geometry
Funkcionalʹnyj analiz i ego priloženiâ, Tome 19 (1985) no. 1, pp. 85-86
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{FAA_1985_19_1_a19,
author = {L. E. Faibusovich},
title = {Existence and uniqueness of extremal solutions of the {Riccati} equation, and symplectic geometry},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {85--86},
year = {1985},
volume = {19},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_1985_19_1_a19/}
}
TY - JOUR AU - L. E. Faibusovich TI - Existence and uniqueness of extremal solutions of the Riccati equation, and symplectic geometry JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1985 SP - 85 EP - 86 VL - 19 IS - 1 UR - http://geodesic.mathdoc.fr/item/FAA_1985_19_1_a19/ LA - ru ID - FAA_1985_19_1_a19 ER -
L. E. Faibusovich. Existence and uniqueness of extremal solutions of the Riccati equation, and symplectic geometry. Funkcionalʹnyj analiz i ego priloženiâ, Tome 19 (1985) no. 1, pp. 85-86. http://geodesic.mathdoc.fr/item/FAA_1985_19_1_a19/
[1] Uonem M., Lineinye mnogomernye sistemy upravleniya, Nauka, M., 1980 | MR
[2] Arnold V.I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR
[3] Givental A.B., Funkts. analiz, 17:3 (1983), 73–74 | MR | Zbl
[4] Churilov A.N., Sib. mat. zh., 1979, no. 4, 854–867 | MR
[5] Lancaster P., Rodman L., Int. J. Contr., 32 (1980), 285–309 | DOI | MR | Zbl