Topological pressure and the variational principle for noncompact sets
Funkcionalʹnyj analiz i ego priloženiâ, Tome 18 (1984) no. 4, pp. 50-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1984_18_4_a3,
     author = {Ya. B. Pesin and B. S. Pitskel'},
     title = {Topological pressure and the variational principle for noncompact sets},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {50--63},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1984_18_4_a3/}
}
TY  - JOUR
AU  - Ya. B. Pesin
AU  - B. S. Pitskel'
TI  - Topological pressure and the variational principle for noncompact sets
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1984
SP  - 50
EP  - 63
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1984_18_4_a3/
LA  - ru
ID  - FAA_1984_18_4_a3
ER  - 
%0 Journal Article
%A Ya. B. Pesin
%A B. S. Pitskel'
%T Topological pressure and the variational principle for noncompact sets
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1984
%P 50-63
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1984_18_4_a3/
%G ru
%F FAA_1984_18_4_a3
Ya. B. Pesin; B. S. Pitskel'. Topological pressure and the variational principle for noncompact sets. Funkcionalʹnyj analiz i ego priloženiâ, Tome 18 (1984) no. 4, pp. 50-63. http://geodesic.mathdoc.fr/item/FAA_1984_18_4_a3/

[1] Bowen R., “Equilibrium states and the ergodic theory of Anosov diffeomorphism”, Lect. Notes Math., 470, 1975, 108 | MR | Zbl

[2] Bowen R., “Topological entropy for noncompact sets”, Trans. Amer. Math. Soc., 184, 1973, 125–136 | DOI | MR

[3] Denker M., “Remarques sur la pression pour les transformationes contimus”, C.R. Acad. Sci. Paris, 279 (1974), 967–970 | MR | Zbl

[4] Dinaburg E.I., “Svyaz mezhdu razlichnymi entropiinymi kharakteristikami dinamicheskikh sistem”, Izv. AN SSSR, seriya matem., 35:2 (1971), 324–366 | MR | Zbl

[5] Goodwyn L.W., “Topological entropy bounds measure-theoretic entropy”, Proc. Amer. Math. Soc., 23:3 (1969), 679–688 | DOI | MR | Zbl

[6] Misiurewicz M., “A short proof of the variational principle for $Z^\nu$ action on a compact space”, Astérisque, 40 (1976), 147–157 | MR

[7] Misiurewicz M., “Topological entropy and metric entropy”, Monogr. Enseign. Math., 1981, no. 29, 61–65 | MR

[8] Ruelle D., “Statistical mechanics on a compact set with $Z^\nu$ action satisfying expansiveness and specification”, Trans. Amer. Math. Soc., 185, 1973, 237–251 | DOI | MR

[9] Walters P., “A variational principle for the pressure of continuous transformations”, Amer. J. Math., 470:97 (1975), 937–971 | DOI | MR

[10] Afraimovich V.A., Lesin Ya.B., “Ergodicheskie svoistva i razmernost attraktorov lorentsevskogo tipa”, Tezisy dokladov na mezhd. simp, po nelineinym i turbulentnym protsessam v fizike (1983, oktyabr), Kiev

[11] Hofbauer F., “On intrinsic ergodicity of piece-wise monotonic transformation with positiv entropy”, Israel J. Math., 34:3 (1979), 213–237 | DOI | MR | Zbl

[12] Hofbauer F., Keller G., “Ergodic properties of invariant measures for piece-wise monotonic transformation”, Math. Z., 180 (1982), 119–140 | DOI | MR | Zbl