Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1984_18_3_a2, author = {Yu. S. Ilyashenko}, title = {Limit cycles of polynomial vector fields with nondegenerate singular points on the real plane}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {32--42}, publisher = {mathdoc}, volume = {18}, number = {3}, year = {1984}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1984_18_3_a2/} }
TY - JOUR AU - Yu. S. Ilyashenko TI - Limit cycles of polynomial vector fields with nondegenerate singular points on the real plane JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1984 SP - 32 EP - 42 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_1984_18_3_a2/ LA - ru ID - FAA_1984_18_3_a2 ER -
Yu. S. Ilyashenko. Limit cycles of polynomial vector fields with nondegenerate singular points on the real plane. Funkcionalʹnyj analiz i ego priloženiâ, Tome 18 (1984) no. 3, pp. 32-42. http://geodesic.mathdoc.fr/item/FAA_1984_18_3_a2/
[1] Dyulak A., O predelnykh tsiklakh, Nauka, M., 1980 | MR
[2] Ilyashenko Yu.S., “Topologiya fazovykh portretov analiticheskikh differentsialnykh uravnenii na kompleksnoi proektivnoi ploskosti”, Trudy sem. im. I.G. Petrovskogo, 4, 1978, 83–136 | MR
[3] Ilyashenko Yu.S., Osobye tochki i predelnye tsikly differentsialnykh uravnenii na veschestvennoi i kompleksnoi ploskosti, Preprint, NIVTs AN SSSR, Puschine, 1982
[4] Il'iasenko Ju.S., “The finiteness problem for limit cycles of polinomial vector fields on the plane, germs of saddle resonant vector fields and non Hausdorff Riemann surfaces”, Leningrad Int. Topological Conf., Abstracts, Nauka, Leningrad, 1982 | MR
[5] Lyapunov A.M., Obschaya zadacha ob ustoichivosti dvizheniya, ONTI, M.–L., 1935 | MR
[6] Puankare A., O krivykh, opredelyaemykh differentsialnymi uravneniyami, Gostekhizdat, M.–L., 1947
[7] Smeil S., “Differentsiruemye dinamicheskie sistemy”, UMN, 25:1 (1970), 113–185 | MR
[8] Sotomayor I., Paterlini R., “Quadratic vector fields with finitely many periodic orbits”, Lect. Notes in Math., 1007, 1983, 753–766 | DOI | MR | Zbl