Finitely additive measures on $S^2$ and $S^3$, invariant with respect to rotations
Funkcionalʹnyj analiz i ego priloženiâ, Tome 18 (1984) no. 3.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1984_18_3_a11,
     author = {V. G. Drinfeld},
     title = {Finitely additive measures on $S^2$ and $S^3$, invariant with respect to rotations},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {77},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1984_18_3_a11/}
}
TY  - JOUR
AU  - V. G. Drinfeld
TI  - Finitely additive measures on $S^2$ and $S^3$, invariant with respect to rotations
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1984
SP  - 77
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1984_18_3_a11/
LA  - ru
ID  - FAA_1984_18_3_a11
ER  - 
%0 Journal Article
%A V. G. Drinfeld
%T Finitely additive measures on $S^2$ and $S^3$, invariant with respect to rotations
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1984
%P 77
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1984_18_3_a11/
%G ru
%F FAA_1984_18_3_a11
V. G. Drinfeld. Finitely additive measures on $S^2$ and $S^3$, invariant with respect to rotations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 18 (1984) no. 3. http://geodesic.mathdoc.fr/item/FAA_1984_18_3_a11/

[1] Delin P., UMN, 30:5 (1975), 159–190 | MR | Zbl

[2] Zhake E., Lenglends R.P., Avtomorfnye formy na $GS(2)$, Mir, M., 1973 | MR

[3] Banach S., Oeuvres, 1, Warszawa, 1967, 318–322 | MR

[4] Margulis G.A., Monditshene für Mathematik, 90:3 (1980), 233–235 | DOI | MR

[5] Sullivan D., Bull. Amer. Math. Soc. (New Series), 4:1 (1981), 121–123 | DOI | MR | Zbl

[6] Rankin R.A., Proc. Cambridge Philos. Soc., 35 (1939), 351–372 | DOI | MR | Zbl

[7] Del Junco A., Rosenblatt J., Math. Ann., 245 (1979), 185–197 | DOI | MR | Zbl