Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1984_18_3_a11, author = {V. G. Drinfeld}, title = {Finitely additive measures on $S^2$ and $S^3$, invariant with respect to rotations}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {77}, publisher = {mathdoc}, volume = {18}, number = {3}, year = {1984}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1984_18_3_a11/} }
V. G. Drinfeld. Finitely additive measures on $S^2$ and $S^3$, invariant with respect to rotations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 18 (1984) no. 3. http://geodesic.mathdoc.fr/item/FAA_1984_18_3_a11/
[1] Delin P., UMN, 30:5 (1975), 159–190 | MR | Zbl
[2] Zhake E., Lenglends R.P., Avtomorfnye formy na $GS(2)$, Mir, M., 1973 | MR
[3] Banach S., Oeuvres, 1, Warszawa, 1967, 318–322 | MR
[4] Margulis G.A., Monditshene für Mathematik, 90:3 (1980), 233–235 | DOI | MR
[5] Sullivan D., Bull. Amer. Math. Soc. (New Series), 4:1 (1981), 121–123 | DOI | MR | Zbl
[6] Rankin R.A., Proc. Cambridge Philos. Soc., 35 (1939), 351–372 | DOI | MR | Zbl
[7] Del Junco A., Rosenblatt J., Math. Ann., 245 (1979), 185–197 | DOI | MR | Zbl