Models of representations of classical groups and their hidden symmetries
Funkcionalʹnyj analiz i ego priloženiâ, Tome 18 (1984) no. 3, pp. 14-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1984_18_3_a1,
     author = {I. M. Gel'fand and A. V. Zelevinskii},
     title = {Models of representations of classical groups and their hidden symmetries},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {14--31},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1984_18_3_a1/}
}
TY  - JOUR
AU  - I. M. Gel'fand
AU  - A. V. Zelevinskii
TI  - Models of representations of classical groups and their hidden symmetries
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1984
SP  - 14
EP  - 31
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1984_18_3_a1/
LA  - ru
ID  - FAA_1984_18_3_a1
ER  - 
%0 Journal Article
%A I. M. Gel'fand
%A A. V. Zelevinskii
%T Models of representations of classical groups and their hidden symmetries
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1984
%P 14-31
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1984_18_3_a1/
%G ru
%F FAA_1984_18_3_a1
I. M. Gel'fand; A. V. Zelevinskii. Models of representations of classical groups and their hidden symmetries. Funkcionalʹnyj analiz i ego priloženiâ, Tome 18 (1984) no. 3, pp. 14-31. http://geodesic.mathdoc.fr/item/FAA_1984_18_3_a1/

[1] Biedenharn L.C., Flath D., Beyond the enveloping algebra of $sl_3$, Preprint, Duke University, 1982 | MR

[2] Tvistory i kalibrovochnye polya, Mir, M., 1983 | MR

[3] Gelfand I.M., Bernshtein I.N., Gelfand S.I., “Modeli predstavlenii kompaktnykh grupp Li”, Tr. sem. Petrovskogo, no. 2, 1976, 3–21 ; Sel. Math. Sov., 1:2 (1981), 121–142 | Zbl

[4] Krämer M., “Some remarks sjuggesting an interesting theory of harmonic functions on $SU(2n+1)/Sp(n)$ and $SO(2n+1)/U(n)$”, Arch. Math., 33:1 (1979), 76–79 | DOI | MR | Zbl

[5] Kac V.G., “Lie superalgebras”, Adv. Math., 26:1 (1977), 8–96 | DOI | MR | Zbl

[6] Leites D.A., Teoriya supermnogoobrazii, Petrozavodsk, 1983

[7] Serganova V.V., “Klassifikatsiya prostykh veschestvennykh superalgebr Li i simmetricheskikh superprostranstv”, Funkts. analiz, 17:3 (1983), 46–54 | MR | Zbl

[8] Khelgason S., Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964

[9] Lion Zh., Vern M., Predstavlenie Veilya, indeks Maslova i teta-ryady, Mir, M., 1983 | MR

[10] Vinberg E.B., Kimelfeld B.N., “Odnorodnye oblasti na flagovykh mnogoobraziyakh i sfericheskie podgruppy poluprostykh grupp Li.”, Funkts. analiz, 12:3 (1978), 12–19 | MR | Zbl

[11] Barut A., Ronchka R., Teoriya predstavlenii grupp i ee prilozheniya, t. 1, Mir, M., 1980 | MR | Zbl

[12] Krämer M., “Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen”, Comp. Math., 39 (1979), 129–153 | MR

[13] Bernshtein I.N., Gelfand I.M., Gelfand S.I., “Novaya model predstavlenii konechnykh poluprostykh algebraicheskikh grupp”, UMN, 29:3 (1974), 185–186 | MR

[14] Khovanova T.G., “Modeli predstavlenii i obobschennye algebry Klifforda”, Funkts. analiz, 16:4 (1982), 90–91 | MR | Zbl

[15] Vogan D., Representations of real reductive Lie groups, Birkhäuser, Boston, 1981 | MR | Zbl

[16] Shikheeva V.V., “Postroenie modeli predstavlenii polnoi lineinoi gruppy nad konechnym polem nechetnoi kharakteristiki”, UMN, 34:5 (1979), 233–234 | MR | Zbl

[17] Klyachko A.A., “Modeli dlya kompleksnykh predstavlenii grupp $GL(n,q)$”, Matem. sb., 120 (1983), 371–386 | MR

[18] Macdonald I.G., Symmetric functions and Hall polynomials, Clarendon Press, Oxford, 1979 | MR | Zbl