Conditions for similarity to unitary and self-adjoint operators
Funkcionalʹnyj analiz i ego priloženiâ, Tome 18 (1984) no. 1, pp. 16-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1984_18_1_a3,
     author = {S. N. Naboko},
     title = {Conditions for similarity to unitary and self-adjoint operators},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {16--27},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1984_18_1_a3/}
}
TY  - JOUR
AU  - S. N. Naboko
TI  - Conditions for similarity to unitary and self-adjoint operators
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1984
SP  - 16
EP  - 27
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1984_18_1_a3/
LA  - ru
ID  - FAA_1984_18_1_a3
ER  - 
%0 Journal Article
%A S. N. Naboko
%T Conditions for similarity to unitary and self-adjoint operators
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1984
%P 16-27
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1984_18_1_a3/
%G ru
%F FAA_1984_18_1_a3
S. N. Naboko. Conditions for similarity to unitary and self-adjoint operators. Funkcionalʹnyj analiz i ego priloženiâ, Tome 18 (1984) no. 1, pp. 16-27. http://geodesic.mathdoc.fr/item/FAA_1984_18_1_a3/

[1] Sekelfalvi-Nad B., Foiash Ch., Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970 | MR

[2] Gokhberg I.Ts., Krein M.G., “Ob odnom opisanii operatorov szhatiya, podobnykh unitarnym”, Funkts. analiz, 1:1 (1967), 38–60 | Zbl

[3] Sz.-Nagy B., “On uniformly bounded linear transformations in Hilbert space”, Acta Sci. Math. (Szeged, Hung.), 11:3 (1947), 152–157 | MR

[4] Davis C., Foias C., “Operators with bounded characteristic functions and their $J$-unitary dilation”, Acta Sci. Math., 32:1–2 (1971), 127–139 | MR | Zbl

[5] Markus A.C., “Nekotorye priznaki polnoty sistemy kornevykh vektorov lineinogo operatora v banakhovom prostranstve”, Matem. sb., 70 (1966), 526–561 | MR

[6] Stampfli J.G., “A local spectral theory for operators. P. III: Resolvents, spectral sets and similarity”, Trans. Amer. Math. Soc., 168, 1972, 133–151 | MR | Zbl

[7] Daletskii Yu.L., Krein M.G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1972 | MR

[8] Sakhnovich L.A., “Neunitarnye operatory s absolyutno nepreryvnym spektrom”, Izv. AN SSSR, seriya matem., 33:1 (1969), 52–64 | Zbl

[9] Riss F., Sekefalvi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979 | MR

[10] Naboko S.N., “Funktsionalnaya model teorii vozmuschenii i ee prilozheniya k teorii rasseyaniya”, Trudy matem. in-ta im. V.A. Steklova, 147, 1980, 86–114 | MR | Zbl

[11] Naboko S.N., “O singulyarnom spektre nesamosopryazhennykh operatorov”, Zap. nauchn. sem. LOMI, 113, 1981, 149–177 | MR | Zbl

[12] Faddeev L.D., “O modeli Fridrikhsa v teorii vozmuschenii nepreryvnogo spektra”, Trudy matem. in-ta im. V.A. Steklova, 73, 1964, 292–313 | MR | Zbl

[13] Pavlov B.S., Petras S.V., “O singulyarnom spektre slabo vozmuschennogo operatora umnozheniya”, Funkts. analiz, 4:2 (1970), 54–61 | MR | Zbl

[14] Naboko S.N., “O nesamosopryazhennoi modeli Fridrikhsa”, Zap. nauchn. sem. LOMI, 39, 1974, 40–58 | MR | Zbl

[15] Duren P., Theory of $H^p$-spaces, Acad. Press, New York, 1970 | MR

[16] Van Casteren J., “A problem of Sz.-Nagy.”, Acta Sci. Math., 42:1–2 (1980), 189–194 | MR | Zbl