Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1984_18_1_a3, author = {S. N. Naboko}, title = {Conditions for similarity to unitary and self-adjoint operators}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {16--27}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {1984}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1984_18_1_a3/} }
S. N. Naboko. Conditions for similarity to unitary and self-adjoint operators. Funkcionalʹnyj analiz i ego priloženiâ, Tome 18 (1984) no. 1, pp. 16-27. http://geodesic.mathdoc.fr/item/FAA_1984_18_1_a3/
[1] Sekelfalvi-Nad B., Foiash Ch., Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970 | MR
[2] Gokhberg I.Ts., Krein M.G., “Ob odnom opisanii operatorov szhatiya, podobnykh unitarnym”, Funkts. analiz, 1:1 (1967), 38–60 | Zbl
[3] Sz.-Nagy B., “On uniformly bounded linear transformations in Hilbert space”, Acta Sci. Math. (Szeged, Hung.), 11:3 (1947), 152–157 | MR
[4] Davis C., Foias C., “Operators with bounded characteristic functions and their $J$-unitary dilation”, Acta Sci. Math., 32:1–2 (1971), 127–139 | MR | Zbl
[5] Markus A.C., “Nekotorye priznaki polnoty sistemy kornevykh vektorov lineinogo operatora v banakhovom prostranstve”, Matem. sb., 70 (1966), 526–561 | MR
[6] Stampfli J.G., “A local spectral theory for operators. P. III: Resolvents, spectral sets and similarity”, Trans. Amer. Math. Soc., 168, 1972, 133–151 | MR | Zbl
[7] Daletskii Yu.L., Krein M.G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1972 | MR
[8] Sakhnovich L.A., “Neunitarnye operatory s absolyutno nepreryvnym spektrom”, Izv. AN SSSR, seriya matem., 33:1 (1969), 52–64 | Zbl
[9] Riss F., Sekefalvi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979 | MR
[10] Naboko S.N., “Funktsionalnaya model teorii vozmuschenii i ee prilozheniya k teorii rasseyaniya”, Trudy matem. in-ta im. V.A. Steklova, 147, 1980, 86–114 | MR | Zbl
[11] Naboko S.N., “O singulyarnom spektre nesamosopryazhennykh operatorov”, Zap. nauchn. sem. LOMI, 113, 1981, 149–177 | MR | Zbl
[12] Faddeev L.D., “O modeli Fridrikhsa v teorii vozmuschenii nepreryvnogo spektra”, Trudy matem. in-ta im. V.A. Steklova, 73, 1964, 292–313 | MR | Zbl
[13] Pavlov B.S., Petras S.V., “O singulyarnom spektre slabo vozmuschennogo operatora umnozheniya”, Funkts. analiz, 4:2 (1970), 54–61 | MR | Zbl
[14] Naboko S.N., “O nesamosopryazhennoi modeli Fridrikhsa”, Zap. nauchn. sem. LOMI, 39, 1974, 40–58 | MR | Zbl
[15] Duren P., Theory of $H^p$-spaces, Acad. Press, New York, 1970 | MR
[16] Van Casteren J., “A problem of Sz.-Nagy.”, Acta Sci. Math., 42:1–2 (1980), 189–194 | MR | Zbl