A bound, in terms of its volume, for the number of vertices of a convex polyhedron when the vertices have integer coordinates
Funkcionalʹnyj analiz i ego priloženiâ, Tome 18 (1984) no. 1, pp. 13-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1984_18_1_a2,
     author = {S. V. Konyagin and K. A. Sevastyanov},
     title = {A bound, in terms of its volume, for the number of vertices of a convex polyhedron when the vertices have integer coordinates},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {13--15},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1984_18_1_a2/}
}
TY  - JOUR
AU  - S. V. Konyagin
AU  - K. A. Sevastyanov
TI  - A bound, in terms of its volume, for the number of vertices of a convex polyhedron when the vertices have integer coordinates
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1984
SP  - 13
EP  - 15
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1984_18_1_a2/
LA  - ru
ID  - FAA_1984_18_1_a2
ER  - 
%0 Journal Article
%A S. V. Konyagin
%A K. A. Sevastyanov
%T A bound, in terms of its volume, for the number of vertices of a convex polyhedron when the vertices have integer coordinates
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1984
%P 13-15
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1984_18_1_a2/
%G ru
%F FAA_1984_18_1_a2
S. V. Konyagin; K. A. Sevastyanov. A bound, in terms of its volume, for the number of vertices of a convex polyhedron when the vertices have integer coordinates. Funkcionalʹnyj analiz i ego priloženiâ, Tome 18 (1984) no. 1, pp. 13-15. http://geodesic.mathdoc.fr/item/FAA_1984_18_1_a2/

[1] Arnold V.I., “Statistika tselochislennykh vypuklykh mnogogrannikov”, Funkts. analiz, 14:2 (1980), 1–3 | MR | Zbl

[2] Gusman M., Differentsirovanie integralov v $\mathbf R^n$, Mir, M., 1978 | MR