Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1983_17_4_a2, author = {M. A. Semenov-Tian-Shansky}, title = {What is a classical $r$-matrix?}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {17--33}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {1983}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1983_17_4_a2/} }
M. A. Semenov-Tian-Shansky. What is a classical $r$-matrix?. Funkcionalʹnyj analiz i ego priloženiâ, Tome 17 (1983) no. 4, pp. 17-33. http://geodesic.mathdoc.fr/item/FAA_1983_17_4_a2/
[1] Sklyanin E.K., On complete integrability of the Landau–Lifsbitz equation, Preprint LOMI E-3-79, LOMI, Leningrad, 1980 | MR
[2] Sklyanin E.K., “Kvantovyi metod obratnoi zadachi rasseyaniya”, Zap. nauchn. semin. LOMI, 95, 1980, 55–128 | MR | Zbl
[3] Belavin A.A., Drinfeld V.G., “O resheniyakh klassicheskogo uravneniya Yanga–Bakstera dlya prostykh algebr Li”, Funkts. analiz, 16:3 (1982), 1–29 | MR | Zbl
[4] Belavin A.A., Drinfeld V.G., Uravneniya treugolnikov i prostye algebry Li, Preprint ITF. 1982-18, ITF, Chernogolovka | MR
[5] Drinfeld V.G., “Gamiltonovy struktury na gruppakh Li, bialgebry Li i geometricheskii smysl uravnenii Yanga–Bakstera”, DAN SSSR, 268:2 (1983), 285–287 | MR
[6] Faddeev L.D., Integrable models in $1+1$ dimensional quantum field theory, Preprint S.Ph.T. 82/76, CEN Saclay, 1982 | MR
[7] Semenov-Tyap-Shanskii M.A., “Klassicheskie $r$-matritsy i metod orbit”, Zap. nauchn. semin. LOMI, 123, 1983, 77–91 | MR
[8] Reiman A.G., Semenov-Tyan-Shanskii M.A., “Algebry tokov i nelineinye uravneniya v chastnykh proizvodnykh”, DAN SSSR, 251:6 (1980), 1310–1313 | MR
[9] Reiman A.G., “Integriruemye gamiltonovy sistemy, svyazannye s graduirovannymi algebrami Li”, Zap. nauchn. semin. LOMI, 95, 1980, 3–54 | MR
[10] Adler M., Moerbeke P., “Completely integrable systems, Euclidean Lie algebras and curves”, Adv. Math., 38:2 (1980), 267–317 | DOI | MR | Zbl
[11] Reyman A.G., Semenov-Tian-Shanskj M.A., “Reduction of Hamiltonian systems, affine Lie algebras and Lax equations I, II”, Invent. Math., 54:1 (1979), 81–100 ; 63:3 (1981), 423–432 | DOI | MR | Zbl | DOI | MR | Zbl
[12] Kulish P.P., Reiman A.G., “Gamiltonova struktura polinomialnykh puchkov”, Zap. nauchn. semin. LOMI, 123, 1983, 67–76 | MR | Zbl
[13] Lie S. (Unter Mitwirkung von F. Engel), Theorie der Transformationsgruppen, Bd. 1–3, Teubner, Lpz, 1888, 1890, 1893
[14] Kostant B., “Quantization and representation theory”, Proc. of the Research Symp. on Representations of Lie groups (Oxf. 1977), London Math. Soc. Lect. Notes Series, 34, 1979 | MR
[15] Adler M., “O na trace functional for formal pseudodifferential operators and the symplectic structure for KdV type equations”, Invent. Math., 50:2 (1979), 219–248 | MR | Zbl
[16] Muskhelishvili H.I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR
[17] Sklyanin E.K., “O nekotorykh algebraicheskikh strukturakh, svyazannykh s uravneniem Yanga–Bakstera”, Funkts. analiz, 16:4 (1982), 27–34 | MR | Zbl
[18] Gelfand I.M., Dorfman I.Ya., “Gamiltonovy operatory i klassicheskoe uravnenie Yanga–Bakstera”, Funkts. analiz, 16:4 (1982), 1–9 | MR
[19] Gelfand I.M., Dorfman I.Ya., “Skobka Skhoutena i gamiltonovy operatory”, Funkts. analiz, 14:3 (1980), 71–74 | MR
[20] Gelfand I.M., Dikii L.A., Semeistvo gamiltonovykh struktur, svyazannykh s integriruemymi nelineinymi differentsialnymi uravneniyami, Preprint IPM AN SSSR No 136, IPM, Moskva, 1978
[21] Zakharov V.E., Shabat A.B., “Integrirovanie nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya II”, Funkts. analiz, 13:3 (1979), 13–22 | MR | Zbl
[22] Glazman I.M., Lyubich Yu.I., Konechnomernyi lineinyi analiz v zadachakh, Nauka, M., 1969 | MR | Zbl