Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1983_17_4_a1, author = {V. P. Palamodov}, title = {Deformations of {Hopf} manifolds and the {Poincar\'e--Dulac} theorem}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {7--16}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {1983}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1983_17_4_a1/} }
V. P. Palamodov. Deformations of Hopf manifolds and the Poincar\'e--Dulac theorem. Funkcionalʹnyj analiz i ego priloženiâ, Tome 17 (1983) no. 4, pp. 7-16. http://geodesic.mathdoc.fr/item/FAA_1983_17_4_a1/
[1] Borcea C., “Some remarks on deformations of Hopf manifolds”, Rev. Roum. Math. Pures Appl., 26:10 (1981), 1287–1294 | MR | Zbl
[2] Dabrowski K., “Moduli spaces for Hopf surfaces”, Ann. Math., 259:2 (1982), 201–225 | DOI | MR | Zbl
[3] Wehler J., “Versal deformation of Hopf surfaces”, J. Reine Angew. Math., 328 (1981), 22–32 | MR | Zbl
[4] Arnold V.I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR
[5] Kodaira K., Spencer D.C., “On deformation of complex analytic structures”, Ann. Math., 67:2–3 (1958), 382–466 | MR
[6] Palamodov V.P., “Deformatsii kompleksnykh prostranstv”, UMN, 31:3 (1976), 129–194 | MR | Zbl
[7] Palamodov V.P., “Moduli in versal deformation of complex spaces.”, Lect. Notes in Math., 683, 1978, 74–115 | DOI | MR | Zbl
[8] Hilbert D., “Über die volJen Invariantensystem”, Ann. Math., 42:3 (1893), 313–373 | DOI | MR
[9] Bogaevskii V.N., Povzner A.Ya., “Nelineinoe obobschenie srezayuschego otobrazheniya”, Funkts. analiz, 16:3 (1982), 45–46 | MR
[10] Seshadri C.S., “On a theorem of Weitzenbock in invariant theory”, J. Math. Kyoto Univ., 1:3 (1961), 403–409 | MR
[11] Khadzhiev Dzh., “Nekotorye voprosy teorii vektornykh invariantov”, Matem. sb., 72:3 (1967), 420–435 | Zbl
[12] Belitskii G.R., Normalnye formy, invarianty i lokalnye otobrazheniya, Naukova dumka, Kiev, 1979 | MR
[13] Brion M., “La série de Poincaré des $u$-invariants”, CRAS, 293 (1981), 107–110 | MR | Zbl