Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1983_17_3_a3, author = {O. V. Lyashko}, title = {Classification of critical points of functions on a manifold with singular boundary}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {28--36}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {1983}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1983_17_3_a3/} }
TY - JOUR AU - O. V. Lyashko TI - Classification of critical points of functions on a manifold with singular boundary JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1983 SP - 28 EP - 36 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_1983_17_3_a3/ LA - ru ID - FAA_1983_17_3_a3 ER -
O. V. Lyashko. Classification of critical points of functions on a manifold with singular boundary. Funkcionalʹnyj analiz i ego priloženiâ, Tome 17 (1983) no. 3, pp. 28-36. http://geodesic.mathdoc.fr/item/FAA_1983_17_3_a3/
[1] Arnold V.I., “Normalnye formy funktsii vblizi vyrozhdennykh kriticheskikh tochek, gruppy Veilya $A_k$, $D_k$, $E_k$ i lagranzhevy osobennosti”, Funk. analiz, 6:4 (1972), 3–25 | MR
[2] Arnold V.I., “Normalnye formy funktsii v okrestnosti vyrozhdennykh kriticheskikh tochek”, UMN, 29:2 (1974), 11–49 | MR
[3] Arnold V.I., “Kriticheskie tochki funktsii na mnogoobrazii s kraem, prostye gruppy Li $B_k$, $C_k$, $F_4$ i osobennosti evolyut”, UMN, 33:5 (1978), 91–105 | MR | Zbl
[4] Gabrielov A.M., “Bifurkatsii, diagrammy Dynkina i modalnost izolirovannykh osobennostei”, Funkts. analiz, 8:2 (1974), 7–12 | MR | Zbl
[5] Ganning R., Rossi X., Analiticheskie funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1969 | MR
[6] Loojenga E., “The complement of the bifurcation variety of a simple singularity”, Invent. Math., 23:2 (1974), 105–116 | DOI | MR
[7] Lyashko O.V., “Geometriya bifurkatsionnykh diagramm”, UMN, 34:3 (1979), 205–206 | MR | Zbl
[8] Malgranzh B., Idealy differentsiruemykh funktsii, Mir, M., 1968