Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1983_17_3_a0, author = {A. B. Venkov}, title = {Exact formulas for the accessory coefficients in the {Schwarz} equation}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {1--8}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {1983}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1983_17_3_a0/} }
A. B. Venkov. Exact formulas for the accessory coefficients in the Schwarz equation. Funkcionalʹnyj analiz i ego priloženiâ, Tome 17 (1983) no. 3, pp. 1-8. http://geodesic.mathdoc.fr/item/FAA_1983_17_3_a0/
[1] Hejhal D.A., “Monodromy groups and linearly polymorphic funstions”, Acta Math., 135:1–2 (1975), 1–55 | DOI | MR | Zbl
[2] Schwarz H.A., Gesammelte Mathematische Abhandlungen, B. 2, Springer, 1890 | MR | Zbl
[3] Klein F., Fricke R., Vorlesungen über die Theorie der Automorphen Funktionen, B. 2, Teubner, 1901 | MR
[4] Gurvits A., Kurant P., Teoriya funktsii, Nauka, M., 1968 | MR
[5] Golubev V.V., Lektsii po analiticheskoi teorii differentsialnykh uravnenii, Gosizdat, M.–L., 1950 | MR
[6] Venkov A.B., “Spektralnaya teoriya avtomorfnykh funktsii”, Trudy matem. in-ta im. V.A. Steklova, 153, 1981, 1–172 | MR | Zbl
[7] Lehner J., Discontinuous groups and automorphic functions, AMS, Providence, 1964 | MR | Zbl
[8] Ford L.P., Avtomorfnye funktsii, ONTI, M.–L., 1936
[9] Kurant R., Gilbert D., Metody matematicheskoi fiziki, t. I, GTTI, M.–L., 1933 | MR
[10] Rademacher H., “The Fourier coefficients of the modular invariant $J(\tau)$”, Amer. J. Math., 60 (1938), 501–512 | DOI | MR
[11] Niebur D., “A class of nonanalytic automorphic functions”, Nagoya Math. J., 52 (1973), 133–145 | DOI | MR | Zbl
[12] Abramovits M., Stigan I., Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979 | MR
[13] Faddeev L.D., “Razlozhenie po sobstvennym funktsiyam operatora Laplasa na fundamentalnoi oblasti diskretnoi gruppy na ploskosti Lobachevskogo”, Trudy MMO, 17, 1967, 323–349 | MR
[14] Fay J.D., “Fourier coefficients of the resolvent for a Fuchsian group”, J. Reine Angew. Math., 294/294 (1977), 143–203 | MR | Zbl
[15] Selberg A., “On the estimation of Fourier coefficients of modular forms”, Proc. Symp. Pure Math, 8, AMS, 1965, 1–15 | DOI | MR