Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1983_17_2_a8, author = {A. M. Vershik and I. M. Gel'fand and M. I. Graev}, title = {A commutative model of representation of the group of flows $SL(2,\mathbb{R})^X$ that is connected with a unipotent subgroup}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {70--72}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {1983}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1983_17_2_a8/} }
TY - JOUR AU - A. M. Vershik AU - I. M. Gel'fand AU - M. I. Graev TI - A commutative model of representation of the group of flows $SL(2,\mathbb{R})^X$ that is connected with a unipotent subgroup JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1983 SP - 70 EP - 72 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_1983_17_2_a8/ LA - ru ID - FAA_1983_17_2_a8 ER -
%0 Journal Article %A A. M. Vershik %A I. M. Gel'fand %A M. I. Graev %T A commutative model of representation of the group of flows $SL(2,\mathbb{R})^X$ that is connected with a unipotent subgroup %J Funkcionalʹnyj analiz i ego priloženiâ %D 1983 %P 70-72 %V 17 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_1983_17_2_a8/ %G ru %F FAA_1983_17_2_a8
A. M. Vershik; I. M. Gel'fand; M. I. Graev. A commutative model of representation of the group of flows $SL(2,\mathbb{R})^X$ that is connected with a unipotent subgroup. Funkcionalʹnyj analiz i ego priloženiâ, Tome 17 (1983) no. 2, pp. 70-72. http://geodesic.mathdoc.fr/item/FAA_1983_17_2_a8/
[1] Vershik A.M., Gelfand I.M., Graev M.I., UMN, 28:5 (1973), 83–128 | MR
[2] Gelfand I.M., Vilenkin N.Ya., Nekotorye primeneniya garmonicheskogo analiza. Osnaschennye gilbertovy prostranstva, Fizmatgiz, M., 1961 | MR
[3] Gelfand I.M., Graev M.I., Pyatetskii-Shapiro I.I., Teoriya predstavlenii i avtomorfnye funktsii, Nauka, M., 1966 | MR
[4] Skorokhod A.V., Sluchainye protsessy s nezavisimymi prirascheniyami, Nauka, M., 1964 | MR | Zbl