Any separable ultrametric space can be isometrically imbedded in $l_2$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 17 (1983) no. 1, pp. 85-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1983_17_1_a18,
     author = {A. F. Timan and I. A. Vestfrid},
     title = {Any separable ultrametric space can be isometrically imbedded in $l_2$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {85--86},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1983_17_1_a18/}
}
TY  - JOUR
AU  - A. F. Timan
AU  - I. A. Vestfrid
TI  - Any separable ultrametric space can be isometrically imbedded in $l_2$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1983
SP  - 85
EP  - 86
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1983_17_1_a18/
LA  - ru
ID  - FAA_1983_17_1_a18
ER  - 
%0 Journal Article
%A A. F. Timan
%A I. A. Vestfrid
%T Any separable ultrametric space can be isometrically imbedded in $l_2$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1983
%P 85-86
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1983_17_1_a18/
%G ru
%F FAA_1983_17_1_a18
A. F. Timan; I. A. Vestfrid. Any separable ultrametric space can be isometrically imbedded in $l_2$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 17 (1983) no. 1, pp. 85-86. http://geodesic.mathdoc.fr/item/FAA_1983_17_1_a18/

[1] Menger K., Anzeiger der Akad. der Wissenschaften in Wien, Math. Nat. Kl., 65 (1928), 159–160 | Zbl

[2] Menger K., Jahresbericht der Deutschen Math.-Ver., 40 (1931), 201–219

[3] Menger K., Amer. J. Math., 53 (1931), 721–745 | DOI | MR

[4] Fréchet M., Ann. Math., 36:3 (1935), 705–718 | DOI | MR

[5] Wilson W.A., Amer. J. Math., 57 (1935), 62–68 | DOI | MR

[6] Schöenberg J.J., Ann. Math., 36:3 (1935), 724–732 | DOI | MR

[7] Schöenberg J.J., Ann. Math., Ser. 2, 38:4 (1937), 787–793 | DOI | MR

[8] Schöenberg J.J., Trans. Amer. Math. Soc., 44, no. 3, 1938, 522–536 | DOI | MR

[9] Young G., Householder A.S., Psychometrica, 1938, no. 3, 331–333 | MR

[10] Schöenberg J.J., von Neumann J., Trans. Amer. Math. Soc., 50, no. 2, 1941, 226–251 | DOI | MR

[11] Vestfrid I.A., Timan A.F., DAN SSSR, 246:3 (1979), 528–530 | MR | Zbl

[12] Khausdorf F., Teoriya mnozhestv, ONTI, M., 1937

[13] Kreinovich V.Ya., UMN, 30:1 (1975), 241–242 | MR

[14] Timan A.F., Trudy IV Vsesoyuznogo matem. s'ezda, II, L., 1964, 683–693 | MR

[15] Timan A.F., Trudy matem. in-ta im. V.A. Steklova, 134, 1975, 314–326 | MR | Zbl