@article{FAA_1983_17_1_a18,
author = {A. F. Timan and I. A. Vestfrid},
title = {Any separable ultrametric space can be isometrically imbedded in $l_2$},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {85--86},
year = {1983},
volume = {17},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_1983_17_1_a18/}
}
A. F. Timan; I. A. Vestfrid. Any separable ultrametric space can be isometrically imbedded in $l_2$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 17 (1983) no. 1, pp. 85-86. http://geodesic.mathdoc.fr/item/FAA_1983_17_1_a18/
[1] Menger K., Anzeiger der Akad. der Wissenschaften in Wien, Math. Nat. Kl., 65 (1928), 159–160 | Zbl
[2] Menger K., Jahresbericht der Deutschen Math.-Ver., 40 (1931), 201–219
[3] Menger K., Amer. J. Math., 53 (1931), 721–745 | DOI | MR
[4] Fréchet M., Ann. Math., 36:3 (1935), 705–718 | DOI | MR
[5] Wilson W.A., Amer. J. Math., 57 (1935), 62–68 | DOI | MR
[6] Schöenberg J.J., Ann. Math., 36:3 (1935), 724–732 | DOI | MR
[7] Schöenberg J.J., Ann. Math., Ser. 2, 38:4 (1937), 787–793 | DOI | MR
[8] Schöenberg J.J., Trans. Amer. Math. Soc., 44, no. 3, 1938, 522–536 | DOI | MR
[9] Young G., Householder A.S., Psychometrica, 1938, no. 3, 331–333 | MR
[10] Schöenberg J.J., von Neumann J., Trans. Amer. Math. Soc., 50, no. 2, 1941, 226–251 | DOI | MR
[11] Vestfrid I.A., Timan A.F., DAN SSSR, 246:3 (1979), 528–530 | MR | Zbl
[12] Khausdorf F., Teoriya mnozhestv, ONTI, M., 1937
[13] Kreinovich V.Ya., UMN, 30:1 (1975), 241–242 | MR
[14] Timan A.F., Trudy IV Vsesoyuznogo matem. s'ezda, II, L., 1964, 683–693 | MR
[15] Timan A.F., Trudy matem. in-ta im. V.A. Steklova, 134, 1975, 314–326 | MR | Zbl