Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1982_16_4_a4, author = {D. R. Yafaev}, title = {Spectral properties of the {Schr\"odinger} operator with a potential having a slow falloff}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {47--54}, publisher = {mathdoc}, volume = {16}, number = {4}, year = {1982}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1982_16_4_a4/} }
TY - JOUR AU - D. R. Yafaev TI - Spectral properties of the Schr\"odinger operator with a potential having a slow falloff JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1982 SP - 47 EP - 54 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_1982_16_4_a4/ LA - ru ID - FAA_1982_16_4_a4 ER -
D. R. Yafaev. Spectral properties of the Schr\"odinger operator with a potential having a slow falloff. Funkcionalʹnyj analiz i ego priloženiâ, Tome 16 (1982) no. 4, pp. 47-54. http://geodesic.mathdoc.fr/item/FAA_1982_16_4_a4/
[1] Jensen A., Kato T., “Spectral properties of Schrodinger operators and time-decay of the wave functions”, Duke Math. J., 46:3 (1979), 583–611 | DOI | MR | Zbl
[2] Jensen A., “Spectral properties of Schrödinger operators and time-decay of the wave functions. Results in $L^2(\mathbf R^m)$, $m\ge5$”, Duke Math. J., 47:1 (1980), 57–80 | DOI | MR | Zbl
[3] Jensen A., “Local decay in time of solutions to Schrödinger's equation with a dilationanalytic interaction”, Manuscripta Math., 25:1 (1978), 61–77 | DOI | MR | Zbl
[4] Ranch J., “Local decay of scattering solutions to Schrödinger's equations”, Comm. Math. Phys., 61 (1978), 149–168 | DOI | MR
[5] Yafaev D.P., “Sverkhstepennoe ubyvanie po vremeni reshenii uravneniya Shredingera”, DAN SSSR, 258:4 (1981), 850–853 | MR | Zbl
[6] Birman M.Sh., “O spektre singulyarnykh granichnykh zadach”, Matem. sb., 55:2 (1961), 125–174 | MR | Zbl
[7] Ikebe T., Saito Y., “Limiting absorption method and absolute continuity for the Schrödinger operator”, J. Math. Kyoto Univ., 12:3 (1972), 513–542 | MR | Zbl