Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1982_16_4_a1, author = {I. M. Krichever}, title = {The {Peierls} model}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {10--26}, publisher = {mathdoc}, volume = {16}, number = {4}, year = {1982}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1982_16_4_a1/} }
I. M. Krichever. The Peierls model. Funkcionalʹnyj analiz i ego priloženiâ, Tome 16 (1982) no. 4, pp. 10-26. http://geodesic.mathdoc.fr/item/FAA_1982_16_4_a1/
[1] Dubrovin B.A., Matveev V.B., Novikov S.P., “Nelineinye uravneniya tipa Kortevega–de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, UMN, 31:1 (1976), 55–136 | MR | Zbl
[2] Krichever I.M., “Metody algebraicheskoi geometrii v teorii nelineinykh uravnenii”, UMN, 32:6 (1977), 183–208 | MR | Zbl
[3] Krichever I.M., Novikov S.P., “Golomorfnye rassloeniya nad algebraicheskimi krivymi i nelineinye uravneniya”, UMN, 35:6 (1980), 47–68 | MR | Zbl
[4] Dubrovin B.A., “Teta-funktsii i nelineinye uravneniya”, UMN, 36:2 (1981), 11–80 | MR | Zbl
[5] Novikov S.P., “Periodicheskaya zadacha Kortevega–de Friza”, Funkts. analiz, 8:3 (1974), 54–66 | MR | Zbl
[6] Brazovskii S.A., Gordyunin S.A., Kirova N.N., “Tochnoe reshenie modeli Paierlsa s proizvolnym chislom elektronov na elementarnuyu yacheiku”, Pisma v ZhETF, 31:8 (1980), 486–490
[7] Brazovskii S.L., Dzyaloshinskii I.E., Kirova N.N., “Spinovye sostoyaniya v modeli Paierlsa i konechnozonnye potentsialy”, ZhETF, 81:6 (1981), 2279–2298
[8] Belokolos E.D., “Zadacha Paierlsa–Frelikha i konechnozonnye potentsialy. I”, TMF, 45:2 (1980), 268–275 | MR
[9] Belokolos E.D., “Zadacha Paierlsa–Frelikha i konechnozonnye potentsialy. II”, TMF, 48:1 (1981), 60–69 | MR
[10] Brazovskii S.A., Dzyaloshinskii I.E., “Dinamika odnomernoi elektron-fononnoi sistemy pri nizkoi temperature”, ZhETF, 71:6 (1976), 2338–2348
[11] Paierls R., Kvantovaya teoriya tverdykh tel, IL, M., 1956
[12] Brazovskii S.A., Dzyaloshinskii I.E., Krichever I.M., “Tochno reshaemye diskretnye modeli Paierlsa”, ZhETF, 82:8 (1982)
[13] Dzyaloshinskii I.E., “Teoriya gelikoidalnykh struktur”, ZhETF, 47:5 (1964), 992–1008
[14] Dzyloshinskii I., “On Frelix's model of one dimensional superconductivity”, Coll. prop. of Phys. system. B. Landkvist, Acad. Press, New York–London, 1973, 143–165
[15] Aubry S., “Metal-insulator transition in one-dimensional deformable lattices”, Bifurcation Phenomena in Math. Phys. and Related Topics, eds. G. Bardos, D. Bessis, 1980, 163–184 | DOI | MR
[16] Krichever I.M., “Algebraicheskie krivye i nelineinye raznostnye uravneniya”, UMN, 33:4 (1978), 215–216 | MR | Zbl
[17] Its A.R., Matveev V.B., “Ob odnom klasse reshenii uravneniya KdF”, Problemy matematicheskoi fiziki, 8, LGU, 1976
[18] Krichever I.M., “Integrirovanie nelineinykh uravnenii metodami algebraicheskoi geometrii”, Funkts. analiz, 11:1 (1977), 15–31 | MR | Zbl
[19] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. Ellipticheskie i avtomorfnye funktsii. Funktsii Lame i Mate, Nauka, M., 1967 | MR
[20] Dinaburg E.I., Sinai Y.C., “Schrodinger equation with quasi-periodic potentials”, Fund. Anal., 9 (1976), 279–283 | DOI