The Peierls model
Funkcionalʹnyj analiz i ego priloženiâ, Tome 16 (1982) no. 4, pp. 10-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1982_16_4_a1,
     author = {I. M. Krichever},
     title = {The {Peierls} model},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {10--26},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1982_16_4_a1/}
}
TY  - JOUR
AU  - I. M. Krichever
TI  - The Peierls model
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1982
SP  - 10
EP  - 26
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1982_16_4_a1/
LA  - ru
ID  - FAA_1982_16_4_a1
ER  - 
%0 Journal Article
%A I. M. Krichever
%T The Peierls model
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1982
%P 10-26
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1982_16_4_a1/
%G ru
%F FAA_1982_16_4_a1
I. M. Krichever. The Peierls model. Funkcionalʹnyj analiz i ego priloženiâ, Tome 16 (1982) no. 4, pp. 10-26. http://geodesic.mathdoc.fr/item/FAA_1982_16_4_a1/

[1] Dubrovin B.A., Matveev V.B., Novikov S.P., “Nelineinye uravneniya tipa Kortevega–de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, UMN, 31:1 (1976), 55–136 | MR | Zbl

[2] Krichever I.M., “Metody algebraicheskoi geometrii v teorii nelineinykh uravnenii”, UMN, 32:6 (1977), 183–208 | MR | Zbl

[3] Krichever I.M., Novikov S.P., “Golomorfnye rassloeniya nad algebraicheskimi krivymi i nelineinye uravneniya”, UMN, 35:6 (1980), 47–68 | MR | Zbl

[4] Dubrovin B.A., “Teta-funktsii i nelineinye uravneniya”, UMN, 36:2 (1981), 11–80 | MR | Zbl

[5] Novikov S.P., “Periodicheskaya zadacha Kortevega–de Friza”, Funkts. analiz, 8:3 (1974), 54–66 | MR | Zbl

[6] Brazovskii S.A., Gordyunin S.A., Kirova N.N., “Tochnoe reshenie modeli Paierlsa s proizvolnym chislom elektronov na elementarnuyu yacheiku”, Pisma v ZhETF, 31:8 (1980), 486–490

[7] Brazovskii S.L., Dzyaloshinskii I.E., Kirova N.N., “Spinovye sostoyaniya v modeli Paierlsa i konechnozonnye potentsialy”, ZhETF, 81:6 (1981), 2279–2298

[8] Belokolos E.D., “Zadacha Paierlsa–Frelikha i konechnozonnye potentsialy. I”, TMF, 45:2 (1980), 268–275 | MR

[9] Belokolos E.D., “Zadacha Paierlsa–Frelikha i konechnozonnye potentsialy. II”, TMF, 48:1 (1981), 60–69 | MR

[10] Brazovskii S.A., Dzyaloshinskii I.E., “Dinamika odnomernoi elektron-fononnoi sistemy pri nizkoi temperature”, ZhETF, 71:6 (1976), 2338–2348

[11] Paierls R., Kvantovaya teoriya tverdykh tel, IL, M., 1956

[12] Brazovskii S.A., Dzyaloshinskii I.E., Krichever I.M., “Tochno reshaemye diskretnye modeli Paierlsa”, ZhETF, 82:8 (1982)

[13] Dzyaloshinskii I.E., “Teoriya gelikoidalnykh struktur”, ZhETF, 47:5 (1964), 992–1008

[14] Dzyloshinskii I., “On Frelix's model of one dimensional superconductivity”, Coll. prop. of Phys. system. B. Landkvist, Acad. Press, New York–London, 1973, 143–165

[15] Aubry S., “Metal-insulator transition in one-dimensional deformable lattices”, Bifurcation Phenomena in Math. Phys. and Related Topics, eds. G. Bardos, D. Bessis, 1980, 163–184 | DOI | MR

[16] Krichever I.M., “Algebraicheskie krivye i nelineinye raznostnye uravneniya”, UMN, 33:4 (1978), 215–216 | MR | Zbl

[17] Its A.R., Matveev V.B., “Ob odnom klasse reshenii uravneniya KdF”, Problemy matematicheskoi fiziki, 8, LGU, 1976

[18] Krichever I.M., “Integrirovanie nelineinykh uravnenii metodami algebraicheskoi geometrii”, Funkts. analiz, 11:1 (1977), 15–31 | MR | Zbl

[19] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. Ellipticheskie i avtomorfnye funktsii. Funktsii Lame i Mate, Nauka, M., 1967 | MR

[20] Dinaburg E.I., Sinai Y.C., “Schrodinger equation with quasi-periodic potentials”, Fund. Anal., 9 (1976), 279–283 | DOI