Solutions of the classical Yang--Baxter equation for simple Lie algebras
Funkcionalʹnyj analiz i ego priloženiâ, Tome 16 (1982) no. 3, pp. 1-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1982_16_3_a0,
     author = {A. A. Belavin and V. G. Drinfeld},
     title = {Solutions of the classical {Yang--Baxter} equation for simple {Lie} algebras},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--29},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1982_16_3_a0/}
}
TY  - JOUR
AU  - A. A. Belavin
AU  - V. G. Drinfeld
TI  - Solutions of the classical Yang--Baxter equation for simple Lie algebras
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1982
SP  - 1
EP  - 29
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1982_16_3_a0/
LA  - ru
ID  - FAA_1982_16_3_a0
ER  - 
%0 Journal Article
%A A. A. Belavin
%A V. G. Drinfeld
%T Solutions of the classical Yang--Baxter equation for simple Lie algebras
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1982
%P 1-29
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1982_16_3_a0/
%G ru
%F FAA_1982_16_3_a0
A. A. Belavin; V. G. Drinfeld. Solutions of the classical Yang--Baxter equation for simple Lie algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 16 (1982) no. 3, pp. 1-29. http://geodesic.mathdoc.fr/item/FAA_1982_16_3_a0/

[1] Belavin A.A., “Diskretnye gruppy i integriruemost kvantovykh sistem”, Funkts. analiz, 14:4 (1980), 18–26 | MR | Zbl

[2] Zhiber A.V., Shabat A.B., “Uravneniya Kleina–Gordona s netrivialnoi gruppoi”, DAN SSSR, 247:5 (1979), 1103–1107 | MR

[3] Kats V.G., “Avtomorfizmy konechnogo poryadka poluprostykh algebr Li”, Funkts. analiz, 3:3 (1969), 94–96 | MR

[4] Kats V.G., “Prostye neprivodimye graduirovannye algebry Li konechnogo rosta”, Izv. AN SSSR, ser. matem., 32:6 (1968), 1323–1367 | Zbl

[5] Kulish P.P., Sklyanin E.K., “O resheniyakh uravneniya Yanga–Bakstera”, Differentsialnaya geometriya gruppy Li i mekhanika, Zap. nauchn. sem. LOMI, 95, 1980, 129–160 | MR

[6] Leznov A.N., Savelev M.V., Smirnov V.G., Teoriya predstavlenii grupp i integrirovanie nelineinykh dinamicheskikh sistem, Preprint IFVE, 80-51, IFVE, Serpukhov, 1980

[7] Makdonald I.G., “Affinnye sistemy kornei i $\eta$-funktsiya Dedekinda”, Matematika, 16:4 (1972), 3–49 | MR

[8] Serr Zh.-P., Algebry Li i gruppy Li, Mir, M., 1969 | MR | Zbl

[9] Cherednik I.V., “Ob odnom metode postroeniya faktorizovannykh $S$-matrits v elementarnykh funktsiyakh”, Teoret. i matem. fizika, 43:1 (1980), 117–119 | MR

[10] Bogoyavlensky O.I., “On perturbations of the periodic Toda lattice”, Comm. Math. Phys., 51 (1976), 201–209 | DOI | MR

[11] Kac V.G., “Infinite-dimensional algebras, Dedekind's $\eta$-function, classical Möbius function and the very strange formula”, Adv. in Math., 30:2 (1978), 85–136 | DOI | MR | Zbl

[12] Michailov A.V., Olshanetsky M.A., Perelomov A.M., Preprint ITEP-64, ITEP, Moscow, 1980

[13] Bulgadaev S.A., “Two-dimensional integrable field theories connected with simple Lie algebras”, P. L. B, 96 (1980), 151–153 | DOI | MR

[14] Ooms A.I., “On Lie algebras having a primitive universal envelopping algebra”, J. of Algebra, 32:3 (1975), 488–500 | DOI | MR

[15] Ooms A.I., “On Lie algebras with primitive envelopes”, Proc. Amer Math. Soc., 58, Supplements (July 1976), 67–72 | DOI | MR | Zbl

[16] Ooms A.I., “On Frobenius Lie algebras”, Comm. in Algebra, 8:1 (1980), 13–52 | DOI | MR | Zbl

[17] Weil A., Varietes abeliennes et courbes algebriques, Hermann, Paris, 1948 | MR

[18] Weil A., “On algebraic groups of transformations”, Amer. J. of Math., 77 (1955), 355–391 | DOI | MR | Zbl