Manifolds of polynomials having a root of fixed multiplicity, and the generalized newton equation
Funkcionalʹnyj analiz i ego priloženiâ, Tome 16 (1982) no. 1, pp. 13-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1982_16_1_a1,
     author = {A. B. Givental'},
     title = {Manifolds of polynomials having a root of fixed multiplicity, and the generalized newton equation},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {13--18},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1982_16_1_a1/}
}
TY  - JOUR
AU  - A. B. Givental'
TI  - Manifolds of polynomials having a root of fixed multiplicity, and the generalized newton equation
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1982
SP  - 13
EP  - 18
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1982_16_1_a1/
LA  - ru
ID  - FAA_1982_16_1_a1
ER  - 
%0 Journal Article
%A A. B. Givental'
%T Manifolds of polynomials having a root of fixed multiplicity, and the generalized newton equation
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1982
%P 13-18
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1982_16_1_a1/
%G ru
%F FAA_1982_16_1_a1
A. B. Givental'. Manifolds of polynomials having a root of fixed multiplicity, and the generalized newton equation. Funkcionalʹnyj analiz i ego priloženiâ, Tome 16 (1982) no. 1, pp. 13-18. http://geodesic.mathdoc.fr/item/FAA_1982_16_1_a1/

[1] Arnold V.I., “Wave fronts evolution and equivariant Morse lemma”, Comm. Pure Appl. Math., 29:6 (1976), 557–582 | DOI | MR

[2] Zakalyukin V.M., “Perestroiki volnovykh frontov, zavisyaschikh ot odnogo parametra”, Funkts. analiz, 10:2 (1976), 69–70 | MR | Zbl

[3] Givental A.B., “Svorachivanie invariantov grupp, porozhdennykh otrazheniyami i svyazannykh s prostymi osobennostyami funktsii”, Funkts. analiz, 14:2 (1980), 4–14 | MR | Zbl

[4] Saito K., On a linear structure of a quotient variety by a finite reflection group, Preprint, Kioto Univ., Japan. Kioto, 1979 | MR