Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1982_16_1_a1, author = {A. B. Givental'}, title = {Manifolds of polynomials having a root of fixed multiplicity, and the generalized newton equation}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {13--18}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {1982}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1982_16_1_a1/} }
TY - JOUR AU - A. B. Givental' TI - Manifolds of polynomials having a root of fixed multiplicity, and the generalized newton equation JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1982 SP - 13 EP - 18 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_1982_16_1_a1/ LA - ru ID - FAA_1982_16_1_a1 ER -
A. B. Givental'. Manifolds of polynomials having a root of fixed multiplicity, and the generalized newton equation. Funkcionalʹnyj analiz i ego priloženiâ, Tome 16 (1982) no. 1, pp. 13-18. http://geodesic.mathdoc.fr/item/FAA_1982_16_1_a1/
[1] Arnold V.I., “Wave fronts evolution and equivariant Morse lemma”, Comm. Pure Appl. Math., 29:6 (1976), 557–582 | DOI | MR
[2] Zakalyukin V.M., “Perestroiki volnovykh frontov, zavisyaschikh ot odnogo parametra”, Funkts. analiz, 10:2 (1976), 69–70 | MR | Zbl
[3] Givental A.B., “Svorachivanie invariantov grupp, porozhdennykh otrazheniyami i svyazannykh s prostymi osobennostyami funktsii”, Funkts. analiz, 14:2 (1980), 4–14 | MR | Zbl
[4] Saito K., On a linear structure of a quotient variety by a finite reflection group, Preprint, Kioto Univ., Japan. Kioto, 1979 | MR