The complex exponent of a singularity does not change along strata $\mu=\mathrm{const}$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 16 (1982) no. 1, pp. 1-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1982_16_1_a0,
     author = {A. N. Varchenko},
     title = {The complex exponent of a singularity does not change along strata $\mu=\mathrm{const}$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--12},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1982_16_1_a0/}
}
TY  - JOUR
AU  - A. N. Varchenko
TI  - The complex exponent of a singularity does not change along strata $\mu=\mathrm{const}$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1982
SP  - 1
EP  - 12
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1982_16_1_a0/
LA  - ru
ID  - FAA_1982_16_1_a0
ER  - 
%0 Journal Article
%A A. N. Varchenko
%T The complex exponent of a singularity does not change along strata $\mu=\mathrm{const}$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1982
%P 1-12
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1982_16_1_a0/
%G ru
%F FAA_1982_16_1_a0
A. N. Varchenko. The complex exponent of a singularity does not change along strata $\mu=\mathrm{const}$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 16 (1982) no. 1, pp. 1-12. http://geodesic.mathdoc.fr/item/FAA_1982_16_1_a0/

[1] Arnold V.I., “Zamechaniya o metode statsionarnoi fazy i chislakh Kokstera”, UMN, 28:5 (1973), 17–44 | MR

[2] Arnold V.I., “Indeks osoboi tochki vektornogo polya, neravenstva Petrovskogo–Oleinik i smeshannye struktury Khodzha”, Funkts. analiz, 12:1 (1978), 1–14 | MR

[3] Briskorn E., “Monodromiya izolirovannykh osobennostei giperpoverkhnostei”, Matematika, 15:4 (1971), 130–160

[4] Varchenko A.N., “Mnogogranniki Nyutona i otsenki ostsilliruyuschikh integralov”, Funkts. analiz, 10:3 (1976), 13–38 | MR | Zbl

[5] Varchenko A.N., “Khodzhevy svoistva svyaznosti Gaussa–Manina”, Funkts. analiz, 14:1 (1980), 46–47 | MR | Zbl

[6] Varchenko A.N., “Asimptotiki golomorfnykh form opredelyayut smeshannuyu strukturu Khodzha”, DAN SSSR, 255:5 (1980), 1035–1038 | MR | Zbl

[7] Lere Zh., Differentsialnoe i integralnoe ischisleniya na kompleksnom analiticheskom mnogoobrazii, IL, M., 1961

[8] Uells R., Differentsialnoe ischislenie na kompleksnykh mnogoobraziyakh, Mir, M., 1976 | MR

[9] Clemens C.H., “Degeneration of Kahler manifolds”, Duke Math. J., 44:2 (1977), 215–290 | DOI | MR | Zbl

[10] Deligne P., “Theorie de Hodge. I”, Proc. Internat. Congress Math., 1, Nice, 1970, 425–430 ; “II”, Publ. Math. IHES, 40, 1971, 5–58 ; “III”, Publ. Math. IHES, 44, 1972, 5–77 | MR | DOI | MR | DOI

[11] Griffiths P.A., “Periods of integrals on algebraic manifolds: summary of main results and discussion of open problems”, Bull. Amer. Math. Soc., 76 (1970), 228–296 | DOI | MR | Zbl

[12] Griffiths P.A., Schmid W., “Recent development in Hodge theory, a dissussions of techniques and results”, Proc. Internat. Golloq. on Discrete Subgroups of Lie Groups, Bombey, 1973, 31–127 | MR

[13] Kobayashi S., Hyperbolic Manifolds and Holomorphic Mappings, Marcel Dekker, New York, 1970 | MR | Zbl

[14] Malgrange B., “Integrates asymptotiques et monodromie”, Ann. scient. Ecole Norm. Super., 7 (1974), 405–430 | DOI | MR | Zbl

[15] Schmid W., “Variation of Hodge stuctures: the singularities of the period mappings”, Invent. math., 22 (1973), 211–319 | DOI | MR | Zbl

[16] Steenbrink J.H.M., “Intersection form for quasihomogeneous singularities”, Compositio Math., 34 (1977), 211–223 | MR | Zbl

[17] Steenbrink J.H.M., “Mixed Hodge structure on vanishing cohomology”, Nordic Summer School, Symposium in Math. (Oslo, August 5–25), 1976, 525–563 | MR

[18] Scherk J., “On the monodromy theorem for isolated hypersurface singularities”, Invent. Math., 58:3 (1980), 289–301 | DOI | MR | Zbl

[19] Varchenko A.N., “The Gauss–Manin connection of isolated singular point and Bernstein polynomial”, Bull. des sciences math., 2-e sec., 104 (1980), 205–223 | MR | Zbl

[20] Lê Dung Tráng, Ramanujam C.P., “The invariance of Milnor's number implies the invariance of topological type”, Amer. J. Math., 98 (1976), 67–78 | DOI | MR | Zbl

[21] Varchenko A.H., “Asimptoticheskaya struktura Khodzha v ischezayuschikh kogomologiyakh”, Izv. AN SSSR, ser. matem., 45 (1981), 540–591 | MR | Zbl