Baxter's equations and algebraic geometry
Funkcionalʹnyj analiz i ego priloženiâ, Tome 15 (1981) no. 2, pp. 22-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1981_15_2_a2,
     author = {I. M. Krichever},
     title = {Baxter's equations and algebraic geometry},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {22--35},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1981_15_2_a2/}
}
TY  - JOUR
AU  - I. M. Krichever
TI  - Baxter's equations and algebraic geometry
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1981
SP  - 22
EP  - 35
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1981_15_2_a2/
LA  - ru
ID  - FAA_1981_15_2_a2
ER  - 
%0 Journal Article
%A I. M. Krichever
%T Baxter's equations and algebraic geometry
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1981
%P 22-35
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1981_15_2_a2/
%G ru
%F FAA_1981_15_2_a2
I. M. Krichever. Baxter's equations and algebraic geometry. Funkcionalʹnyj analiz i ego priloženiâ, Tome 15 (1981) no. 2, pp. 22-35. http://geodesic.mathdoc.fr/item/FAA_1981_15_2_a2/

[1] Baxter R.J., “Partition function of the eight-vertex lattice model”, Ann. Phys. (N. Y.), 70 (1972), 193–228 | DOI | MR | Zbl

[2] Baxter R.J., “One-dimensional anisotropic Heisenberg chain”, Ann. Phys. (N. Y.), 70 (1972), 323–337 | DOI | MR

[3] Baxter R.J., “Eight-vertex model in lattice statistics”, Phys. Rev. Letters, 26 (1971), 832–833 | DOI

[4] Baxter R.J., “One-dimensional anisotropic Heisenberg chain”, Phys. Rev. Letters, 26 (1971), 834–835 | DOI | MR

[5] Baxter R.J., “Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain. I. Some fundamental eigenvectors”, Ann. Phys. (N. Y.), 76 (1973), 1–24 | DOI | MR | Zbl

[6] Heisenberg W., “Zur Theorie das Ferromagnetismus”, Z. Physik, 49:9, 10 (1928), 619–636 | DOI | Zbl

[7] Faddeev L.D., Kvantovye vpolne-integriruemye modeli teorii polya, preprint LOMI, R-2-79, Leningrad, 1979

[8] Takhtadzhyan L.A., Faddeev L.D., “Kvantovyi metod obratnoi zadachi i XYZ model Geizenberga”, UMN, 34:5 (1979), 13–63 | MR

[9] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. Ellipticheskie funktsii. Funktsii Lame i Mate, Nauka, M., 1967 | MR

[10] Krichever I.M., “Integrirovanie nelineinykh uravnenii metodami algebraicheskoi geometrii”, Funkts. analiz, 11:1 (1977), 15–31 | MR | Zbl

[11] Springer D., Vvedenie v teoriyu rimanovykh poverkhnostei, IL, M., 1961

[12] Hodge W., “The isolated singularities of an algebraic surface”, Proc. London Math. Soc., Ser. 2, 30 (1929), 133–143 | DOI | MR | Zbl

[13] Krichever I.M., “Kommutativnye koltsa lineinykh obyknovennykh differentsialnykh operatorov”, Funkts. analiz, 12:3 (1978), 20–31 | MR | Zbl

[14] Krichever I.M., Novikov S.P., “Golomorfnye rassloeniya nad rimanovymi poverkhnostyami i uravnenie Kadomtseva–Petviashvili. I”, Funkts. analiz, 12:4 (1978), 41–52 | MR | Zbl

[15] Tyurin A.N., “Klassifikatsiya vektornykh rassloenii nad algebraicheskoi krivoi proizvolnogo roda”, Izv. AN SSSR, seriya matem., 29:3 (1965), 657–688 | MR | Zbl

[16] Felderhof B., “Diagonalization of the transfer matrix of the free-fermion model”, Physica, 66:2 (1973), 279–298 | DOI | MR