Conservation laws for a class of systems of nonlinear evolution equations
Funkcionalʹnyj analiz i ego priloženiâ, Tome 15 (1981) no. 1, pp. 43-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1981_15_1_a4,
     author = {V. K. Mel'nikov},
     title = {Conservation laws for a class of systems of nonlinear evolution equations},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {43--60},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1981_15_1_a4/}
}
TY  - JOUR
AU  - V. K. Mel'nikov
TI  - Conservation laws for a class of systems of nonlinear evolution equations
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1981
SP  - 43
EP  - 60
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1981_15_1_a4/
LA  - ru
ID  - FAA_1981_15_1_a4
ER  - 
%0 Journal Article
%A V. K. Mel'nikov
%T Conservation laws for a class of systems of nonlinear evolution equations
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1981
%P 43-60
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1981_15_1_a4/
%G ru
%F FAA_1981_15_1_a4
V. K. Mel'nikov. Conservation laws for a class of systems of nonlinear evolution equations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 15 (1981) no. 1, pp. 43-60. http://geodesic.mathdoc.fr/item/FAA_1981_15_1_a4/

[1] Gardner C.S., Green J.M., Kruskal M.D., Miura R.M., “Method for solving the KdV equation”, Phys. Rev. Lett., 19:19 (1967), 1095–1097 | DOI

[2] Kunin I.A., Teoriya uprugikh sred s mikrostrukturoi, Nauka, M., 1975 | MR

[3] Dubrovin B.A., Matveev V.B., Novikov S.P., “Nelineinye uravneniya tipa Kortevega–de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, UMN, XXXI:1 (1976), 55–136 | MR

[4] Lax P., “Integrals of nonlinear equations of evolution and solitary waves”, Comm. Pure Appl. Math., 21:5 (1968), 467–490 | DOI | MR | Zbl

[5] Ablowitz M.J., Kaup D.J., Newell A.C., Segur H., “Nonlinearevolution equations of physical significance”, Phys. Rev. Lett., 31:2 (1973), 125–127 | DOI | MR

[6] Zakharov V.E., Shabat A.B., “Skhema integrirovaniya nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya. I”, Funkts. analiz, 8:3 (1974), 43–53 | MR | Zbl

[7] 3axarov V.E., Manakov S.V., “Ob obobkhtsenii metoda obratnoi zadachi”, TMF, 27:3 (1976), 283–287 | MR

[8] Krichever I.M., “Metody algebraicheskoi geometrii v teorii nelineinykh uravnenii”, UMN, XXXII:6 (1977), 183–208

[9] Gelfand I.M., Dikii L.A., “Asimptotika rezolventy shturm–liuvillevskikh uravnenii i algebra uravnenii Kortevega–de Friza”, UMN, XXX:5 (1975), 67–100 | MR

[10] Gelfand I.M., Dikii L.A., “Drobnye stepeni operatorov i gamiltonovy sistemy”, Funkts. analiz, 10:4 (1976), 13–29 | MR | Zbl

[11] Gelfand I.M., Dikii L.A., “Rezolventa i gamiltonovy sistemy”, Funkts. analiz, 11:2 (1977), 11–27 | MR

[12] Gelfand I.M., Dikii L.A., “Ischislenie strui i nelinegshye gamiltonovy sistemy”, Funkts. analiz, 12:2 (1978), 8–23 | MR

[13] Melnikov V.K., “Ob uravneniyakh, porozhdaemykh operatornym sootnosheniem”, Matem. sb., 108 (1979), 378–392 | MR