Admissible $n$-dimensional complexes of curves in $\mathbb{R}^n$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 14 (1980) no. 4, pp. 36-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1980_14_4_a4,
     author = {I. M. Gel'fand and M. I. Graev},
     title = {Admissible $n$-dimensional complexes of curves in $\mathbb{R}^n$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {36--44},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1980_14_4_a4/}
}
TY  - JOUR
AU  - I. M. Gel'fand
AU  - M. I. Graev
TI  - Admissible $n$-dimensional complexes of curves in $\mathbb{R}^n$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1980
SP  - 36
EP  - 44
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1980_14_4_a4/
LA  - ru
ID  - FAA_1980_14_4_a4
ER  - 
%0 Journal Article
%A I. M. Gel'fand
%A M. I. Graev
%T Admissible $n$-dimensional complexes of curves in $\mathbb{R}^n$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1980
%P 36-44
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1980_14_4_a4/
%G ru
%F FAA_1980_14_4_a4
I. M. Gel'fand; M. I. Graev. Admissible $n$-dimensional complexes of curves in $\mathbb{R}^n$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 14 (1980) no. 4, pp. 36-44. http://geodesic.mathdoc.fr/item/FAA_1980_14_4_a4/

[1] Gelfand I.M., Graev M.I., “Integralnye preobrazovaniya, svyazannye s kompleksami pryamykh v kompleksnom affinnom prostranstve”, DAN SSSR, 138:6 (1961), 1266–1269 | MR

[2] Gelfand I.M., Graev M.I., Vilenkin N.Ya., Integralnaya geometriya i svyazannye s nei voprosy teorii predstavlenii, Fizmatgiz, M., 1962 | MR

[3] Gelfand I.M., Graev M.I., “Dopustimye kompleksy pryamykh v $C^n$”, Funkts. analiz, 2:3 (1968), 39–52 | MR

[4] Maius K., “Dopustimye kompleksy s odnoi kriticheskoi tochkoi”, Funkts. analiz, 9:2 (1975), 81–82 | MR

[5] Gelfand I.M., Gindikin S.G., Shapiro 3.Ya., “Lokalnaya zadacha integralnoi geometrii”, Funkts. analiz, 13:2 (1979), 11–31 | MR