Liouville's theorem and Harnack's inequality for Beltrami's equation on an arbitrary manifold
Funkcionalʹnyj analiz i ego priloženiâ, Tome 14 (1980) no. 2, pp. 71-72
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{FAA_1980_14_2_a20,
author = {V. V. Minakhin},
title = {Liouville's theorem and {Harnack's} inequality for {Beltrami's} equation on an arbitrary manifold},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {71--72},
year = {1980},
volume = {14},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_1980_14_2_a20/}
}
TY - JOUR AU - V. V. Minakhin TI - Liouville's theorem and Harnack's inequality for Beltrami's equation on an arbitrary manifold JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1980 SP - 71 EP - 72 VL - 14 IS - 2 UR - http://geodesic.mathdoc.fr/item/FAA_1980_14_2_a20/ LA - ru ID - FAA_1980_14_2_a20 ER -
V. V. Minakhin. Liouville's theorem and Harnack's inequality for Beltrami's equation on an arbitrary manifold. Funkcionalʹnyj analiz i ego priloženiâ, Tome 14 (1980) no. 2, pp. 71-72. http://geodesic.mathdoc.fr/item/FAA_1980_14_2_a20/
[1] Landis E.M., UMN, XVIII:1 (1963), 3–62 | MR
[2] Landis E.M., Uravneniya vtorogo poryadka ellipticheskogo i parabolicheskogo tipov, Nauka, M., 1971 | MR
[3] Minakhin V.V., Funkts. analiz, 14:2 (1980), 69–70 | MR | Zbl
[4] Moser J., Comm. Pure Appl. Math., 14:3 (1961), 577–591 | DOI | MR | Zbl
[5] Sario L., Nakai M., Wang C., Chung, Classification theory of Riemannian manifolds, Lecture Notes Math., 605, 1977 | DOI | MR | Zbl