Liouville's theorem and Harnack's inequality for Beltrami's equation on an arbitrary manifold
Funkcionalʹnyj analiz i ego priloženiâ, Tome 14 (1980) no. 2, pp. 71-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1980_14_2_a20,
     author = {V. V. Minakhin},
     title = {Liouville's theorem and {Harnack's} inequality for {Beltrami's} equation on an arbitrary manifold},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {71--72},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1980_14_2_a20/}
}
TY  - JOUR
AU  - V. V. Minakhin
TI  - Liouville's theorem and Harnack's inequality for Beltrami's equation on an arbitrary manifold
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1980
SP  - 71
EP  - 72
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1980_14_2_a20/
LA  - ru
ID  - FAA_1980_14_2_a20
ER  - 
%0 Journal Article
%A V. V. Minakhin
%T Liouville's theorem and Harnack's inequality for Beltrami's equation on an arbitrary manifold
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1980
%P 71-72
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1980_14_2_a20/
%G ru
%F FAA_1980_14_2_a20
V. V. Minakhin. Liouville's theorem and Harnack's inequality for Beltrami's equation on an arbitrary manifold. Funkcionalʹnyj analiz i ego priloženiâ, Tome 14 (1980) no. 2, pp. 71-72. http://geodesic.mathdoc.fr/item/FAA_1980_14_2_a20/

[1] Landis E.M., UMN, XVIII:1 (1963), 3–62 | MR

[2] Landis E.M., Uravneniya vtorogo poryadka ellipticheskogo i parabolicheskogo tipov, Nauka, M., 1971 | MR

[3] Minakhin V.V., Funkts. analiz, 14:2 (1980), 69–70 | MR | Zbl

[4] Moser J., Comm. Pure Appl. Math., 14:3 (1961), 577–591 | DOI | MR | Zbl

[5] Sario L., Nakai M., Wang C., Chung, Classification theory of Riemannian manifolds, Lecture Notes Math., 605, 1977 | DOI | MR | Zbl