Benney equations and quasiclassical approximation in the method of the inverse problem
Funkcionalʹnyj analiz i ego priloženiâ, Tome 14 (1980) no. 2, pp. 15-24
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{FAA_1980_14_2_a2,
author = {V. E. Zakharov},
title = {Benney equations and quasiclassical approximation in the method of the inverse problem},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {15--24},
year = {1980},
volume = {14},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_1980_14_2_a2/}
}
V. E. Zakharov. Benney equations and quasiclassical approximation in the method of the inverse problem. Funkcionalʹnyj analiz i ego priloženiâ, Tome 14 (1980) no. 2, pp. 15-24. http://geodesic.mathdoc.fr/item/FAA_1980_14_2_a2/
[1] Benney D.Y., “Some properties of long nonlinear waves”, Studies Appl. Math., LII:1 (1973), 45–50 | DOI | MR
[2] Miura R.M., “Conservation laws for the fully nonlinear long wave equations”, Studies Appl. Math., LIII:1 (1974), 45–56 | DOI | MR
[3] Kupershmit B.A., Manin Yu.I., “Uravnenie dlinnykh voln so svobodnoi poverkhnostyu. I. Zakony sokhraneniya i resheniya”, Funkts. analiz, 11:3 (1977), 31–42 ; “II. Гамильтонова структура и высшие уравнения”, 12:1 (1978), 25–37 | MR | MR
[4] Manakov S.V., “K teorii dvumernoi statsionarnoi samofokusirovki elektromagnitnykh voln”, ZhETF, 65:2 (1973), 505–516
[5] Zakharov V.E., “Gamiltonovskii formalizm dlya voln v nelineinykh sredakh s dispersiei”, Izv. VUZov, radiofizika, XXII:4 (1974), 431–453