Self-adjointness of elliptic operators with infinitely many variables
Funkcionalʹnyj analiz i ego priloženiâ, Tome 14 (1980) no. 1, pp. 85-86
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{FAA_1980_14_1_a25,
author = {N. N. Frolov},
title = {Self-adjointness of elliptic operators with infinitely many variables},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {85--86},
year = {1980},
volume = {14},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_1980_14_1_a25/}
}
N. N. Frolov. Self-adjointness of elliptic operators with infinitely many variables. Funkcionalʹnyj analiz i ego priloženiâ, Tome 14 (1980) no. 1, pp. 85-86. http://geodesic.mathdoc.fr/item/FAA_1980_14_1_a25/
[1] Daletskii Yu.L., DAN SSSR, 227:4 (1976), 784–787 | MR
[2] Berezanskii Yu.M., Mikhailyuk T.A., Ukr. matem. zh., 29:2 (1977), 157–165 | MR
[3] Simon B., Hoegh-Krohn R., J. funct. analysis, 9 (1972), 121–180 | DOI | MR | Zbl
[4] Marchenko A.V., Matem. sb., 96 (1975), 276–293 | MR | Zbl
[5] Frolov N.N., Matem. zametki, 24:2 (1978), 241–248 | MR | Zbl
[6] Daletskii Yu.L., UMN, XXII:4 (1967), 3–54
[7] Berezanskii Yu.M., Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, Kiev, 1965 | MR
[8] Krein S.G., Petunin Yu.I., UMN, XXI:2 (1966), 89–168 | MR