Variational principle for equations integrable by the inverse problem method
Funkcionalʹnyj analiz i ego priloženiâ, Tome 14 (1980) no. 1, pp. 55-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1980_14_1_a10,
     author = {V. E. Zakharov and A. V. Mikhailov},
     title = {Variational principle for equations integrable by the inverse problem method},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {55--56},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1980_14_1_a10/}
}
TY  - JOUR
AU  - V. E. Zakharov
AU  - A. V. Mikhailov
TI  - Variational principle for equations integrable by the inverse problem method
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1980
SP  - 55
EP  - 56
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1980_14_1_a10/
LA  - ru
ID  - FAA_1980_14_1_a10
ER  - 
%0 Journal Article
%A V. E. Zakharov
%A A. V. Mikhailov
%T Variational principle for equations integrable by the inverse problem method
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1980
%P 55-56
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1980_14_1_a10/
%G ru
%F FAA_1980_14_1_a10
V. E. Zakharov; A. V. Mikhailov. Variational principle for equations integrable by the inverse problem method. Funkcionalʹnyj analiz i ego priloženiâ, Tome 14 (1980) no. 1, pp. 55-56. http://geodesic.mathdoc.fr/item/FAA_1980_14_1_a10/

[1] Zakharov V.E., Shabat A.V., Funkts. analiz, 13:3 (1979), 13–22 | MR | Zbl