Spectral properties of elliptic pseudodifferential operators on a closed curve
Funkcionalʹnyj analiz i ego priloženiâ, Tome 13 (1979) no. 4, pp. 54-56
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{FAA_1979_13_4_a6,
author = {M. S. Agranovich},
title = {Spectral properties of elliptic pseudodifferential operators on a closed curve},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {54--56},
year = {1979},
volume = {13},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_1979_13_4_a6/}
}
M. S. Agranovich. Spectral properties of elliptic pseudodifferential operators on a closed curve. Funkcionalʹnyj analiz i ego priloženiâ, Tome 13 (1979) no. 4, pp. 54-56. http://geodesic.mathdoc.fr/item/FAA_1979_13_4_a6/
[1] Rozenblyum G.V., Trudy Mosk. matem. ob-va, 36, 1978, 59–84 | MR | Zbl
[2] Agranovich M.S., Dopolnenie k knige: Voitovich N.N., Katsenelenbaum B.Z., Sivov A.N., Obobschennyi metod sobstvennykh kolebanii v teorii difraktsii, Nauka, M., 1977, 289–416 | MR
[3] Rozenblyum G.V., Problemy matem. analiza, 6, 1977, 143–157 | Zbl
[4] Naimark M.A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR
[5] Colin de Verdière Y., Invent. Math., 43 (1977), 15–42 | DOI | MR