Soliton sectors in continuous time lattice models
Funkcionalʹnyj analiz i ego priloženiâ, Tome 13 (1979) no. 1, pp. 31-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1979_13_1_a3,
     author = {V. A. Malyshev},
     title = {Soliton sectors in continuous time lattice models},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {31--41},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1979_13_1_a3/}
}
TY  - JOUR
AU  - V. A. Malyshev
TI  - Soliton sectors in continuous time lattice models
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1979
SP  - 31
EP  - 41
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1979_13_1_a3/
LA  - ru
ID  - FAA_1979_13_1_a3
ER  - 
%0 Journal Article
%A V. A. Malyshev
%T Soliton sectors in continuous time lattice models
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1979
%P 31-41
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1979_13_1_a3/
%G ru
%F FAA_1979_13_1_a3
V. A. Malyshev. Soliton sectors in continuous time lattice models. Funkcionalʹnyj analiz i ego priloženiâ, Tome 13 (1979) no. 1, pp. 31-41. http://geodesic.mathdoc.fr/item/FAA_1979_13_1_a3/

[1] Doplicher S., Haag R., Roberts J., “Fields, observables and gauge transformations. I”, Commun. Math. Phys., 13 (1969), 1–23 | DOI | MR | Zbl

[2] Frölch J., “New superselection sectors («Soliton states») in two dimensional Bose quantum field models”, Commun. Math. Phys., 47 (1976), 269 | DOI | MR

[3] Coleman S., Classical lumps and their quantum descendants, Lectures at 1975 Intern. School «Ettore Majorana», preprint, 1976 | MR

[4] Ryuell D., Statisticheskaya mekhanika, Mir, M., 1971

[5] Saimon V.,, Model $P(\varphi)_2$ evklidovoi teorii polya, Mir, M., 1976

[6] Kadanoff L., “The application of renormalisation group techniques to quarks and strings”, Rev. Mod. Phys., 49:2 (1977), 267–296 | DOI | MR

[7] Malyshev V.A., “One particle states and scattering for Markov processes”, Lecture Notes in Math., 653, 1978, 173–193 | DOI | MR | Zbl

[8] Minlos P.A., Sinai Ya.G., “Yavlenie razdeleniya faz pri nizkikh temperaturakh v nekotorykh reshetchatykh modelyakh gaza”, Trudy Mosk. matem. ob-va, 19, 1968, 113–178 | MR

[9] Dobrushin R.L., “Markovskie protsessy s bolshim chislom lokalno vzaimodeistvuyuschikh komponent”, Problemy peredachi informatsii, 7 (1971), 70–87 | Zbl

[10] Frölich J., “Soliton Mass and Surface Tension in the $(\lambda|\varphi|)_2^4$. Quantum Field Tlieory”, Phys. Rev. Lett., 38:12 (1977), 619–622 | DOI

[11] Gallavotti G., Martin-Lłf A., “Surface Tension in the Ising Model”, Commun. Math. Phys., 25 (1972), 87–126 | DOI | MR

[12] Kogut J., Susskind L., “Hamiltonian formulation of Wilson's lattice gauge theories”, Phys. Rev. D., 11:2 (1975), 395–408 | DOI | MR

[13] Robinson D., “Return to equilibrium”, Commun. Math. Phys., 31 (1973), 171–189 | DOI | MR | Zbl

[14] Gurevich B.M., Oseledets B.I., “Raspredeleniya Gibbsa i dissipativnost U-diffeomorfizmov”, DAN SSSR, 209:5 (1973), 1021–1023 | Zbl