Hamiltonian formalism for the Novikov–Krichever equations for the commutativity of two operators
Funkcionalʹnyj analiz i ego priloženiâ, Tome 13 (1979) no. 1, pp. 1-7
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{FAA_1979_13_1_a0,
author = {A. P. Veselov},
title = {Hamiltonian formalism for the {Novikov{\textendash}Krichever} equations for the commutativity of two operators},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {1--7},
year = {1979},
volume = {13},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_1979_13_1_a0/}
}
TY - JOUR AU - A. P. Veselov TI - Hamiltonian formalism for the Novikov–Krichever equations for the commutativity of two operators JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1979 SP - 1 EP - 7 VL - 13 IS - 1 UR - http://geodesic.mathdoc.fr/item/FAA_1979_13_1_a0/ LA - ru ID - FAA_1979_13_1_a0 ER -
A. P. Veselov. Hamiltonian formalism for the Novikov–Krichever equations for the commutativity of two operators. Funkcionalʹnyj analiz i ego priloženiâ, Tome 13 (1979) no. 1, pp. 1-7. http://geodesic.mathdoc.fr/item/FAA_1979_13_1_a0/
[1] Gelfand I.M., Dikii L.A., “Drobnye stepeni operatorov i gamiltonovy sistemy”, Funkts. analiz, 10:4 (1976), 13–29 | MR
[2] Gantmakher F., Teoriya matrits, Nauka, M., 1965 | MR
[3] Burbaki N., Algebra. Mnogochleny. Polya. Uporyadochennye gruppy, Nauka, M., 1966 | MR
[4] Krichever I.M., “Integrirovanie nelineinykh uravnenii metodami algebraicheskoi geometrii”, Funkts. analiz, 11:1 (1977), 15–31 | MR | Zbl
[5] Krichever I.M., “Metody algebraicheskoi geometrii v teorii nelineinykh uravnenii”, UMN, XXXII:6 (1977), 183–208
[6] Bogoyavlenskii O.I., “Ob integralakh vysshikh statsionarnykh uravnenii KdF i sobstvennykh chislakh operatora Khilla”, Funkts. analiz, 10:2 (1976), 9–12 | MR | Zbl