Cohomology of infinite-dimensional Lie algebras and Laplace operators
Funkcionalʹnyj analiz i ego priloženiâ, Tome 12 (1978) no. 4, pp. 1-5.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1978_12_4_a0,
     author = {I. M. Gel'fand and B. L. Feigin and D. B. Fuchs},
     title = {Cohomology of infinite-dimensional {Lie} algebras and {Laplace} operators},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--5},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1978_12_4_a0/}
}
TY  - JOUR
AU  - I. M. Gel'fand
AU  - B. L. Feigin
AU  - D. B. Fuchs
TI  - Cohomology of infinite-dimensional Lie algebras and Laplace operators
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1978
SP  - 1
EP  - 5
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1978_12_4_a0/
LA  - ru
ID  - FAA_1978_12_4_a0
ER  - 
%0 Journal Article
%A I. M. Gel'fand
%A B. L. Feigin
%A D. B. Fuchs
%T Cohomology of infinite-dimensional Lie algebras and Laplace operators
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1978
%P 1-5
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1978_12_4_a0/
%G ru
%F FAA_1978_12_4_a0
I. M. Gel'fand; B. L. Feigin; D. B. Fuchs. Cohomology of infinite-dimensional Lie algebras and Laplace operators. Funkcionalʹnyj analiz i ego priloženiâ, Tome 12 (1978) no. 4, pp. 1-5. http://geodesic.mathdoc.fr/item/FAA_1978_12_4_a0/

[1] Goncharova L.V., “Kogomologii algebr Li formalnykh vektornykh polei na pryamoi”, Funkts. analiz, 7:2 (1973), 6–14 | MR | Zbl

[2] Bukhshtaber V.M., Shokurov A.A., “Algebra Landvebera–Novikova i formalnye vektornye polya na pryamoi”, Funkts. analiz, 12:3 (1978), 1–11 | MR | Zbl

[3] Kats V.G., “Beskonechnomernye algebry Li i $\eta$-funktsiya Dedekinda”, Funkts. analiz, 8:1 (1974), 77–78 | MR | Zbl

[4] Gelfand I.M., Fuks D.B., “Kogomologii algebry Li formalnykh vektornykh polei”, Izv. AN SSSR, seriya matem., 34 (1970), 322–337 | MR