Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1978_12_3_a3, author = {G. I. Olshanskii}, title = {Unitary representations of the infinite-dimensional classical groups $U(p,\infty)$, $SO_0(p,\infty)$, $Sp(p,\infty)$ and the corresponding motion groups}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {32--44}, publisher = {mathdoc}, volume = {12}, number = {3}, year = {1978}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1978_12_3_a3/} }
TY - JOUR AU - G. I. Olshanskii TI - Unitary representations of the infinite-dimensional classical groups $U(p,\infty)$, $SO_0(p,\infty)$, $Sp(p,\infty)$ and the corresponding motion groups JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1978 SP - 32 EP - 44 VL - 12 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_1978_12_3_a3/ LA - ru ID - FAA_1978_12_3_a3 ER -
%0 Journal Article %A G. I. Olshanskii %T Unitary representations of the infinite-dimensional classical groups $U(p,\infty)$, $SO_0(p,\infty)$, $Sp(p,\infty)$ and the corresponding motion groups %J Funkcionalʹnyj analiz i ego priloženiâ %D 1978 %P 32-44 %V 12 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_1978_12_3_a3/ %G ru %F FAA_1978_12_3_a3
G. I. Olshanskii. Unitary representations of the infinite-dimensional classical groups $U(p,\infty)$, $SO_0(p,\infty)$, $Sp(p,\infty)$ and the corresponding motion groups. Funkcionalʹnyj analiz i ego priloženiâ, Tome 12 (1978) no. 3, pp. 32-44. http://geodesic.mathdoc.fr/item/FAA_1978_12_3_a3/