The superreflexivity property of a Banach space in terms of the closeness of its finite-dimensional subspaces to euclidean spaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 12 (1978) no. 2, pp. 80-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1978_12_2_a14,
     author = {M. I. Kadets},
     title = {The superreflexivity property of a {Banach} space in terms of the closeness of its finite-dimensional subspaces to euclidean spaces},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {80--81},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1978_12_2_a14/}
}
TY  - JOUR
AU  - M. I. Kadets
TI  - The superreflexivity property of a Banach space in terms of the closeness of its finite-dimensional subspaces to euclidean spaces
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1978
SP  - 80
EP  - 81
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1978_12_2_a14/
LA  - ru
ID  - FAA_1978_12_2_a14
ER  - 
%0 Journal Article
%A M. I. Kadets
%T The superreflexivity property of a Banach space in terms of the closeness of its finite-dimensional subspaces to euclidean spaces
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1978
%P 80-81
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1978_12_2_a14/
%G ru
%F FAA_1978_12_2_a14
M. I. Kadets. The superreflexivity property of a Banach space in terms of the closeness of its finite-dimensional subspaces to euclidean spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 12 (1978) no. 2, pp. 80-81. http://geodesic.mathdoc.fr/item/FAA_1978_12_2_a14/

[1] James R.C., Schäffer J.J., Isr. J. Math, 9:4 (1972), 388–404 | MR

[2] Kadets M.I., Itogi nauki i tekhniki. Matematicheskii analiz, 13, VINITI, M., 1975, 99–127