Poisson brackets and the kernel of the variational derivative in the formal calculus of variations
Funkcionalʹnyj analiz i ego priloženiâ, Tome 10 (1976) no. 4, pp. 30-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1976_10_4_a2,
     author = {I. M. Gel'fand and Yu. I. Manin and M. A. Shubin},
     title = {Poisson brackets and the kernel of the variational derivative in the formal calculus of variations},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {30--34},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1976_10_4_a2/}
}
TY  - JOUR
AU  - I. M. Gel'fand
AU  - Yu. I. Manin
AU  - M. A. Shubin
TI  - Poisson brackets and the kernel of the variational derivative in the formal calculus of variations
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1976
SP  - 30
EP  - 34
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1976_10_4_a2/
LA  - ru
ID  - FAA_1976_10_4_a2
ER  - 
%0 Journal Article
%A I. M. Gel'fand
%A Yu. I. Manin
%A M. A. Shubin
%T Poisson brackets and the kernel of the variational derivative in the formal calculus of variations
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1976
%P 30-34
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1976_10_4_a2/
%G ru
%F FAA_1976_10_4_a2
I. M. Gel'fand; Yu. I. Manin; M. A. Shubin. Poisson brackets and the kernel of the variational derivative in the formal calculus of variations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 10 (1976) no. 4, pp. 30-34. http://geodesic.mathdoc.fr/item/FAA_1976_10_4_a2/

[1] Gelfand I.M., Dikii L.A., “Asimptotika rezolventy shturm-liuvillevskikh uravnenii i algebra uravnenii Kortevega–de Friza”, UMN, XXX:5 (1975), 67–100 | MR

[2] Gelfand I.M., Dikii L.A., “Struktura algebry Li v formalnom variatsionnom ischislenii”, Funkts. analiz, 10:1 (1976), 26–36 | MR

[3] Kruskal M.D., Miura R.M., Gardner C.S., “Korteveg–de Vries equation and generalization. V. Uniqueness and nonexistence of polynomial conservation laws”, J. Math. Phys., 11 (1970), 952–960 | DOI | MR | Zbl

[4] Lax P.D., “Periodic solutions of the KdV equation”, Comm. Pure Appl. Math., 28 (1975), 141–188 | DOI | MR | Zbl

[5] Bogoyavlenskii O.I., Novikov S.P., “O svyazi gamiltonovykh formalizmov statsionarnykh i nestatsionarnykh zadach”, Funkts. analiz, 10:1 (1976), 9–13 | MR | Zbl

[6] Gardner C.S., “Korteweg–de Vries equation and generalizations. IV. The Korteweg–de Vries equation as a Hamiltonian system”, J. Mathematical Phys., 12 (1971), 1548–1551 | DOI | MR | Zbl