Representation of the operator $e^{-tP}$ by a continual integral
Funkcionalʹnyj analiz i ego priloženiâ, Tome 10 (1976) no. 2, pp. 86-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1976_10_2_a19,
     author = {V. L. Roitburd},
     title = {Representation of the operator $e^{-tP}$ by a continual integral},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {86--87},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1976_10_2_a19/}
}
TY  - JOUR
AU  - V. L. Roitburd
TI  - Representation of the operator $e^{-tP}$ by a continual integral
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1976
SP  - 86
EP  - 87
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1976_10_2_a19/
LA  - ru
ID  - FAA_1976_10_2_a19
ER  - 
%0 Journal Article
%A V. L. Roitburd
%T Representation of the operator $e^{-tP}$ by a continual integral
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1976
%P 86-87
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1976_10_2_a19/
%G ru
%F FAA_1976_10_2_a19
V. L. Roitburd. Representation of the operator $e^{-tP}$ by a continual integral. Funkcionalʹnyj analiz i ego priloženiâ, Tome 10 (1976) no. 2, pp. 86-87. http://geodesic.mathdoc.fr/item/FAA_1976_10_2_a19/

[1] Shubin M.A., DAN SSSR, 196:2 (1971), 316–319 | MR

[2] Berezin F.A., Matem. sb., 86 (1971), 578–610 | MR

[3] Roitburd V.L., DAN SSSR, 201:3 (1971), 545–547 | MR | Zbl

[4] Maslov V.P., Shishmarëv I.A., UMN, XXIX:4 (1974), 177 | MR | Zbl

[5] Shubin M.A., DAN SSSR, 207:3 (1972), 551–553

[6] Berezin F.A., Izv. AN SSSR, seriya matem., 36 (1972), 1134–1167 | MR | Zbl

[7] Evgrafov M.A., DAN SSSR, 191:5 (1970), 979–982 | MR | Zbl

[8] Alimov A.L., Teor. i matem. fizika, 11:2 (1972), 182–189 | MR