Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1976_10_1_a4, author = {V. M. Zakalyukin}, title = {Lagrangian and {Legendrian} singularities}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {26--36}, publisher = {mathdoc}, volume = {10}, number = {1}, year = {1976}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1976_10_1_a4/} }
V. M. Zakalyukin. Lagrangian and Legendrian singularities. Funkcionalʹnyj analiz i ego priloženiâ, Tome 10 (1976) no. 1, pp. 26-36. http://geodesic.mathdoc.fr/item/FAA_1976_10_1_a4/
[1] Guckenheimer J., “Catastrophes and partial derivative equations”, Ann. Inst. Fourier., 23:2 (1973), 31–59 | DOI | MR | Zbl
[2] Arnold V.I., “Normalnye formy funktsii vblizi vyrozhdennykh kriticheskikh tochek, gruppy Veilya $A_k$, $D_k$, $E_k$ i lagranzhevy osobennosti”, Funkts. analiz, 6:4 (1972), 3–25 | MR
[3] Hörmander L., “Fourier integral operators. I”, Acta Math., 127 (1971), 71–183 | DOI | MR
[4] Arnold V.I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR
[5] Zakalyukin V.M., “Teorema versalnosti”, Funkts. analiz, 7:2 (1973), 28–31 | MR
[6] Mazer D., “Ustoichivost $C^\infty$-otobrazhenii. III”, Matematika, 14:1 (1970), 145–175
[7] Latur F., “Stabilite des shamps d'applications differentiables”, C.r. Acad. Sci. (Paris), 268 (1969), 1331–1334 | MR
[8] Arnold V.I., “Klassifikatsiya unimodalnykh kriticheskikh tochek funktsii”, Funkts. analiz, 7:3 (1973), 75–76 | MR | Zbl
[9] Arnold V.I., “Klassifikatsiya bimodalnykh kriticheskikh tochek funktsii”, Funkts. analiz, 9:1 (1975), 49–50 | MR | Zbl
[10] Weinstein A., “Lagrangian manifolds”, Adv. Math., 6 (1971), 347–410 | DOI | MR
[11] Guckenheimer J., “Caustics and nondegenerate hamiltonians”, Topology, 13 (1974), 127–133 | DOI | MR | Zbl
[12] Weinstein A., “Lagrangian submanifolds and hamiltonian systems”, Ann. Math., 98 (1973), 377–410 | DOI | MR | Zbl
[13] Janich K., “Caustics and catastrophes”, Math. Ann., 209 (1974), 161–180 | DOI | MR
[14] Golubitsky M., “Contact equivalence for Lagrangian submanifolds”, Lecture notes Math., 468, 1975, 71–73 | DOI | MR | Zbl