On Fredholm representations of discrete groups
Funkcionalʹnyj analiz i ego priloženiâ, Tome 9 (1975) no. 2, pp. 36-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1975_9_2_a4,
     author = {A. S. Mishchenko},
     title = {On {Fredholm} representations of discrete groups},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {36--41},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1975_9_2_a4/}
}
TY  - JOUR
AU  - A. S. Mishchenko
TI  - On Fredholm representations of discrete groups
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1975
SP  - 36
EP  - 41
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1975_9_2_a4/
LA  - ru
ID  - FAA_1975_9_2_a4
ER  - 
%0 Journal Article
%A A. S. Mishchenko
%T On Fredholm representations of discrete groups
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1975
%P 36-41
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1975_9_2_a4/
%G ru
%F FAA_1975_9_2_a4
A. S. Mishchenko. On Fredholm representations of discrete groups. Funkcionalʹnyj analiz i ego priloženiâ, Tome 9 (1975) no. 2, pp. 36-41. http://geodesic.mathdoc.fr/item/FAA_1975_9_2_a4/

[1] Mischenko A.S., “Beskonechnomernye predstavleniya diskretnykh grupp i vysshie signatury”, Izv. AN SSSR, seriya matem., 38 (1974), 81–106

[2] Solovev Yu.P., “Odna teorema tipa Atya–Khirtsebrukha dlya beskonechnykh grupp”, Vestnik MGU, seriya matem., 1975, no. 6

[3] Weishu Shih, “Fiber cobordism and the index of a family of elliptic differential operators”, Bull. Amer. Math. Soc., 72:6 (1966), 984–991 | DOI | MR

[4] Atya M.F., Zinger I.M., “Indeks ellipticheskikh operatorov. I”, UMN, XXIII:5 (1968), 99–142 | MR | Zbl

[5] Lusztig G., “Novikov's higher signature and families of elliptic operators”, J. Diff. geometry, 7 (1971), 229–256 | MR

[6] Like G., “Pseudo-differential operators on Hilbert bundles”, J. Diff. Equations, 12:3 (1972), 566–589 | DOI | MR