Meromorphicity of $P^z$, where $P$ is a matrix
Funkcionalʹnyj analiz i ego priloženiâ, Tome 9 (1975) no. 1, pp. 85-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1975_9_1_a26,
     author = {S. A. Smagin},
     title = {Meromorphicity of $P^z$, where $P$ is a matrix},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {85--86},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1975_9_1_a26/}
}
TY  - JOUR
AU  - S. A. Smagin
TI  - Meromorphicity of $P^z$, where $P$ is a matrix
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1975
SP  - 85
EP  - 86
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1975_9_1_a26/
LA  - ru
ID  - FAA_1975_9_1_a26
ER  - 
%0 Journal Article
%A S. A. Smagin
%T Meromorphicity of $P^z$, where $P$ is a matrix
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1975
%P 85-86
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1975_9_1_a26/
%G ru
%F FAA_1975_9_1_a26
S. A. Smagin. Meromorphicity of $P^z$, where $P$ is a matrix. Funkcionalʹnyj analiz i ego priloženiâ, Tome 9 (1975) no. 1, pp. 85-86. http://geodesic.mathdoc.fr/item/FAA_1975_9_1_a26/

[1] Bernshtein I.N., Gelfand S.I., Funkts. analiz, 3:1 (1969), 84–85 | MR

[2] Smagin S.A., DAN SSSR, 209:5 (1973), 1033–1036 | MR

[3] Grushin V.V., Matem. sb., 88 (1972), 504–521 | MR | Zbl

[4] Atyah M.F., Comm. Pure Appl. Math., 23:2 (1970), 145–150 | DOI | MR