The maximal number of components of a fourth degree surface in $\mathbb{RP}^3$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 6 (1972) no. 4.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1972_6_4_a22,
     author = {V. M. Kharlamov},
     title = {The maximal number of components of a fourth degree surface in $\mathbb{RP}^3$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {101},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1972_6_4_a22/}
}
TY  - JOUR
AU  - V. M. Kharlamov
TI  - The maximal number of components of a fourth degree surface in $\mathbb{RP}^3$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1972
SP  - 101
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1972_6_4_a22/
LA  - ru
ID  - FAA_1972_6_4_a22
ER  - 
%0 Journal Article
%A V. M. Kharlamov
%T The maximal number of components of a fourth degree surface in $\mathbb{RP}^3$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1972
%P 101
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1972_6_4_a22/
%G ru
%F FAA_1972_6_4_a22
V. M. Kharlamov. The maximal number of components of a fourth degree surface in $\mathbb{RP}^3$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 6 (1972) no. 4. http://geodesic.mathdoc.fr/item/FAA_1972_6_4_a22/

[1] Rohn K., Preisschr. Fürstl. Iablonowsch. Geselschaft, Leipzig, 1886, 1–58

[2] Rohn K., Ber. Verb., 63, Leipzig, 1911, 423–440 | Zbl

[3] Petrovskii I.G., Oleinik O.A., Izv. AN SSSR, seriya matem., 13 (1949), 389–402 | MR

[4] Thom R., A symposium in honor of Marston Morse, Princeton University Press, 1965, 255–265 | MR | Zbl

[5] Bredon G.E., Proc. Gonf. on Transformation Groups, Springer-Verlag, 1968, 245–280 | DOI | MR

[6] Atya M.F., Zinger I.M., UMH, XXIV:1 (1969), 127–182

[7] Utkin G.A., DAN SSSR, 175:1 (1937), 40–43 | MR

[8] Rokhlin V.A., Funkts. analiz, 6:4 (1972), 58–64 | MR | Zbl