Birth of complex invariant manifolds close to a singular point of a parametrically dependent vector field
Funkcionalʹnyj analiz i ego priloženiâ, Tome 6 (1972) no. 4, pp. 95-96
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{FAA_1972_6_4_a19,
author = {A. S. Pyartli},
title = {Birth of complex invariant manifolds close to a singular point of a parametrically dependent vector field},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {95--96},
year = {1972},
volume = {6},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_1972_6_4_a19/}
}
TY - JOUR AU - A. S. Pyartli TI - Birth of complex invariant manifolds close to a singular point of a parametrically dependent vector field JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1972 SP - 95 EP - 96 VL - 6 IS - 4 UR - http://geodesic.mathdoc.fr/item/FAA_1972_6_4_a19/ LA - ru ID - FAA_1972_6_4_a19 ER -
A. S. Pyartli. Birth of complex invariant manifolds close to a singular point of a parametrically dependent vector field. Funkcionalʹnyj analiz i ego priloženiâ, Tome 6 (1972) no. 4, pp. 95-96. http://geodesic.mathdoc.fr/item/FAA_1972_6_4_a19/
[1] Arnold V.I., Funkts. analiz, 3:1 (1969), 1–6 | MR
[2] Bryuno A.D., Trudy Mosk. matem. ob-va, 25, 1971, 119–262 | MR | Zbl
[3] Zigel K.L., Matematika, 5:2 (1961), 119–128
[4] Poincare H., These, 1879; Oenvres, I, Paris, 1928
[5] Hopf E., Berich. Sachs. Akad. Wiss. Leipzig Math. Phys. Kl., 94:19 (1942), 15–25