Theorem on matrices depending on parameters and its applications to hyperbolic systems
Funkcionalʹnyj analiz i ego priloženiâ, Tome 6 (1972) no. 2, pp. 1-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1972_6_2_a0,
     author = {M. S. Agranovich},
     title = {Theorem on matrices depending on parameters and its applications to hyperbolic systems},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--11},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1972_6_2_a0/}
}
TY  - JOUR
AU  - M. S. Agranovich
TI  - Theorem on matrices depending on parameters and its applications to hyperbolic systems
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1972
SP  - 1
EP  - 11
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1972_6_2_a0/
LA  - ru
ID  - FAA_1972_6_2_a0
ER  - 
%0 Journal Article
%A M. S. Agranovich
%T Theorem on matrices depending on parameters and its applications to hyperbolic systems
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1972
%P 1-11
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1972_6_2_a0/
%G ru
%F FAA_1972_6_2_a0
M. S. Agranovich. Theorem on matrices depending on parameters and its applications to hyperbolic systems. Funkcionalʹnyj analiz i ego priloženiâ, Tome 6 (1972) no. 2, pp. 1-11. http://geodesic.mathdoc.fr/item/FAA_1972_6_2_a0/

[1] Kreiss H.-O., “Initial boundary value problems for hyperbolic systems”, Comm. Pure Appl. Math., 23 (1970), 277–288 | DOI | MR

[2] Agranovich M.S., “Granichnye zadachi dlya sistem s parametrom”, Matem. sb., 84 (1971), 27–65 | Zbl

[3] Arnold V.I., “O matritsakh, zavisyaschikh ot parametrov”, UMN, XXVI:2 (1971), 101–114 | MR

[4] Fuks B.A., Vvedenie v teoriyu analiticheskikh funktsii mnogikh kompleksnykh peremennykh, Fizmatgiz, M., 1962 | MR

[5] Sacamoto R., “Mixed problems for hyperbolic equations. I, II”, J. Math. Kyoto Univ., 10:2 (1970), 343–373 ; 10:3 (1970), 403–417 ; Matematika, 16:1 (1972), 62–99 | MR | MR

[6] Strang G., “Hyperbolic initial-boundary value problems in two unknowns”, J. Diff. Equations, 6 (1969), 161–171 | DOI | MR | Zbl

[7] Sadamatsu T., “On mixed problems for hyperbolic systems of first order with constant coefficients”, J. Math. Kyoto Univ., 9:3 (1969), 339–361 | MR | Zbl

[8] Inoue A., “On the mixed problem for the wave equation with an oblique boundary condition”, J. Fac. Sci. Univ. Tokyo (Section 1), 16 (1969), 313–329 | MR

[9] Sacamoto R., “Iterated hyperbolic mixed problems”, Publ. RIMS, Ser. A, 6:1 (1970), 1–42 | DOI | MR

[10] Miyatake S., “An approach to hyperbolic mixed problems by singular integral operators”, J. Math. Kyoto Univ., 10:3 (1970), 439–474 | MR | Zbl

[11] Saiason L., “Symmetrizable systems in regions with corners and edges”, J. Math. Mech., 19:3 (1970), 601–607 | MR

[12] Kurlandski J., “Initial boundary problem for hyperbolic equation with an elliptic part”, Bull. Acad. Pol. sci., Ser. sci. techn., 18:5 (1970), 347–353 | MR

[13] Agemi R., Shirota T., “On necessary and sufficient conditions for $L^2$-wellposedness of mixed problems for hyperbolic equations”, J. Fac. Sci. Hokkaido Univ., 21:2 (1970), 133–151 | MR | Zbl

[14] Chazarain J., Piriou A., “Problemes mixtes hyperboliques”, C.r. Ser. A (1971), 272, 868–871 | MR | Zbl

[15] Kasahara K., “On weak well-posendness of mixed problems for hyperbolic system”, Publ. RIMS, 6:3 (1971), 503–514 | DOI | MR | Zbl