Local invertibility of nonlinear Fredholm mappings
Funkcionalʹnyj analiz i ego priloženiâ, Tome 5 (1971) no. 4, pp. 38-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1971_5_4_a4,
     author = {Yu. I. Sapronov},
     title = {Local invertibility of nonlinear {Fredholm} mappings},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {38--43},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1971_5_4_a4/}
}
TY  - JOUR
AU  - Yu. I. Sapronov
TI  - Local invertibility of nonlinear Fredholm mappings
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1971
SP  - 38
EP  - 43
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1971_5_4_a4/
LA  - ru
ID  - FAA_1971_5_4_a4
ER  - 
%0 Journal Article
%A Yu. I. Sapronov
%T Local invertibility of nonlinear Fredholm mappings
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1971
%P 38-43
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1971_5_4_a4/
%G ru
%F FAA_1971_5_4_a4
Yu. I. Sapronov. Local invertibility of nonlinear Fredholm mappings. Funkcionalʹnyj analiz i ego priloženiâ, Tome 5 (1971) no. 4, pp. 38-43. http://geodesic.mathdoc.fr/item/FAA_1971_5_4_a4/

[1] Smale S., “An infinite dimensional version of Sard's theorem”, Amer. J. Math., 87 (1965), 861–866 | DOI | MR | Zbl

[2] Leng S., Vvedenie v teoriyu differentsiruemykh mnogoobrazii, Mir, M., 1967

[3] Ills Dzh., “Osnovaniya globalnogo analiza”, UMN, XXIV:3 (1969), 157–210 | MR

[4] Lyusternik L.A., Sobolev V.I., Elementy funktsionalnogo analiza, Nauka, M., 1965 | MR

[5] Atya M., Lektsii po $K$-teorii, Mir, M., 1967 | MR

[6] Jänich K., “Vektorraumbundel und der Raum der Fredholmoperatoren”, Math. Ann., 160 (1965), 129–142 | DOI | MR

[7] Zabreiko P.P., Krasnoselskii M.A., “Ob odnom prieme polucheniya novykh printsipov nepodvizhnoi tochki”, DAN SSSR, 176:6 (1967), 1233–1235 | MR