Local invertibility of nonlinear Fredholm mappings
Funkcionalʹnyj analiz i ego priloženiâ, Tome 5 (1971) no. 4, pp. 38-43
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{FAA_1971_5_4_a4,
author = {Yu. I. Sapronov},
title = {Local invertibility of nonlinear {Fredholm} mappings},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {38--43},
year = {1971},
volume = {5},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_1971_5_4_a4/}
}
Yu. I. Sapronov. Local invertibility of nonlinear Fredholm mappings. Funkcionalʹnyj analiz i ego priloženiâ, Tome 5 (1971) no. 4, pp. 38-43. http://geodesic.mathdoc.fr/item/FAA_1971_5_4_a4/
[1] Smale S., “An infinite dimensional version of Sard's theorem”, Amer. J. Math., 87 (1965), 861–866 | DOI | MR | Zbl
[2] Leng S., Vvedenie v teoriyu differentsiruemykh mnogoobrazii, Mir, M., 1967
[3] Ills Dzh., “Osnovaniya globalnogo analiza”, UMN, XXIV:3 (1969), 157–210 | MR
[4] Lyusternik L.A., Sobolev V.I., Elementy funktsionalnogo analiza, Nauka, M., 1965 | MR
[5] Atya M., Lektsii po $K$-teorii, Mir, M., 1967 | MR
[6] Jänich K., “Vektorraumbundel und der Raum der Fredholmoperatoren”, Math. Ann., 160 (1965), 129–142 | DOI | MR
[7] Zabreiko P.P., Krasnoselskii M.A., “Ob odnom prieme polucheniya novykh printsipov nepodvizhnoi tochki”, DAN SSSR, 176:6 (1967), 1233–1235 | MR