Korteweg--de Vries equation: A completely integrable Hamiltonian system
Funkcionalʹnyj analiz i ego priloženiâ, Tome 5 (1971) no. 4, pp. 18-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1971_5_4_a2,
     author = {V. E. Zakharov and L. D. Faddeev},
     title = {Korteweg--de {Vries} equation: {A} completely integrable {Hamiltonian} system},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {18--27},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1971_5_4_a2/}
}
TY  - JOUR
AU  - V. E. Zakharov
AU  - L. D. Faddeev
TI  - Korteweg--de Vries equation: A completely integrable Hamiltonian system
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1971
SP  - 18
EP  - 27
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1971_5_4_a2/
LA  - ru
ID  - FAA_1971_5_4_a2
ER  - 
%0 Journal Article
%A V. E. Zakharov
%A L. D. Faddeev
%T Korteweg--de Vries equation: A completely integrable Hamiltonian system
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1971
%P 18-27
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1971_5_4_a2/
%G ru
%F FAA_1971_5_4_a2
V. E. Zakharov; L. D. Faddeev. Korteweg--de Vries equation: A completely integrable Hamiltonian system. Funkcionalʹnyj analiz i ego priloženiâ, Tome 5 (1971) no. 4, pp. 18-27. http://geodesic.mathdoc.fr/item/FAA_1971_5_4_a2/

[1] Gardner C.S., Green J.M., Kruskal M.D., Miura R.M., “Method for solving the Korteweg–de Vries equation”, Phys. Rev. Lett., 19 (1967), 1095–1097 | DOI | MR

[2] Miura R.M., Gardner C.S., Kruskal M.D., “Korteweg–de Vries equation and generalizations, II. Existence of conservation laws and constants of motion”, J. Math. Phys., 9:8 (1968), 1204–1209 | DOI | MR | Zbl

[3] Kruskal M.D., Miura R.M., Gardner C.S., Zabusky N.J., “Korteweg–de Vries equation and generalizations, V. Uniqueness and nonexistence of polynomial conservation laws”, J. Math. Phys., 11:3 (1970), 952–960 | DOI | MR | Zbl

[4] Lax P.D., “Intergrals of nonlinear equations and solitary waves”, Comm. Pure Appl. Math., 21:2 (1968), 467–490 | DOI | MR | Zbl

[5] Faddeev L.D, “Svoistva $S$-matritsy odnomernogo uravneniya Shredingera”, Trudy Matem. in-ta im. V.A. Steklova, 73, 1964, 314–336 | MR | Zbl

[6] Kay J., Moses H.E., “The determination of the scattering potential from the spectral measure function. III”, Nuovo Cimento, 3:2 (1956), 277–304 | DOI | MR

[7] Landau L.D. i Lifshits E.M., Mekhanika, Fizmatgiz, M., 1958 | MR | Zbl

[8] Arnold V.I., Lektsii po klassicheskoi mekhanike, izd. MGU, M., 1968 | MR

[9] Gelfand I.M., Levitan B.M., “Ob odnom prostom tozhdestve dlya sobstvennykh znachenii differentsialnogo operatora vtorogo poryadka”, DAN SSSR, 88:4 (1953), 593–596 | MR

[10] Gelfand I.M., “O tozhdestvakh dlya sobstvennykh znachenii differentsialnogo operatora vtorogo poryadka”, UMN, XI:1 (1956), 191–198

[11] Buslaev V.S., Faddeev L.D., “O formulakh sledov dlya singulyarnogo differentsialnogo operatora Shturma–Liuvillya”, DAN SSSR, 132:1 (1960), 13–16 | MR | Zbl

[12] Zakharov V.E., “Kineticheskoe uravnenie dlya solitonov”, ZhETF, 60:3 (1971), 993–1000