Almost invariant spectral properties of a contraction and multiplicative properties of analytic operator-functions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 5 (1971) no. 3, pp. 32-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1971_5_3_a5,
     author = {Yu. P. Ginzburg},
     title = {Almost invariant spectral properties of a contraction and multiplicative properties of analytic operator-functions},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {32--41},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1971_5_3_a5/}
}
TY  - JOUR
AU  - Yu. P. Ginzburg
TI  - Almost invariant spectral properties of a contraction and multiplicative properties of analytic operator-functions
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1971
SP  - 32
EP  - 41
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1971_5_3_a5/
LA  - ru
ID  - FAA_1971_5_3_a5
ER  - 
%0 Journal Article
%A Yu. P. Ginzburg
%T Almost invariant spectral properties of a contraction and multiplicative properties of analytic operator-functions
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1971
%P 32-41
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1971_5_3_a5/
%G ru
%F FAA_1971_5_3_a5
Yu. P. Ginzburg. Almost invariant spectral properties of a contraction and multiplicative properties of analytic operator-functions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 5 (1971) no. 3, pp. 32-41. http://geodesic.mathdoc.fr/item/FAA_1971_5_3_a5/

[1] Livshits M.S., “Izometricheskie operatory s ravnymi defektnymi chislami, kvazi-unitarnye operatory”, Matem. sb., 26 (1950), 247–264 | Zbl

[2] Livshits M.S., Potapov V.P., “Teorema umnozheniya kharakteristicheskikh matrits-funktsii”, DAN SSSR, 78:4 (1950), 625–628

[3] Shmulyan Yu.L., “Operatory s vyrozhdennoi kharakteristicheskoi funktsiei”, DAN SSSR, 93:6 (1953), 985–988

[4] S.-Nad B., Foyash Ch., Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970 | MR

[5] Landkof N.S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR | Zbl

[6] Ginzburg Yu.P., “O multiplikativnykh predstavleniyakh ogranichennykh analiticheskikh operator-funktsii”, DAN SSSR, 170:1 (1966), 23–26 | MR | Zbl

[7] Gokhberg I.Ts., Krein M.G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965

[8] Birman M.Sh., Entina S.V., “Statsionarnyi podkhod v abstraktnoi teorii rasseyaniya”, Izv. AN SSSR, seriya matem., 31 (1967), 401–430 | MR | Zbl

[9] Ginzburg Yu.P., “O faktorizatsii analiticheskikh matrits-funktsii”, DAN SSSR, 159:3 (1964), 489–492 | MR | Zbl

[10] Ginzburg Yu.P., “Multiplikativnye predstavleniya operator-funktsii ogranichennogo vida”, UMN, XXII:1 (1967), 163–165 | MR

[11] Frostman O., “Potentiel d'éqilibre et capacité des ensembles avec quelques applications à la théorie des fonctions”, Meddel. Lunds Univ Mat. Sem., 3, 1935 | Zbl

[12] Lehto O., “Value distribution and boundary behaviour of a function of bounded characteristic and the Riemann surface of its inverse fuction”, Ann. Acad. Sci. Fenn. Ser. AI, 177 (1954) | MR | Zbl

[13] Ginzburg Yu.P., “O spektralnykh podprostranstvakh szhatii s medlenno rastuschei rezolventoi”, Matem. issledovaniya, 5, no. 4, Kishinev, 1970, 45–62 | MR | Zbl

[14] Gokhberg I.Ts., Krein M.G., “Ob odnom opisanii operatorov szhatiya, podobnykh unitarnym”, Funkts. analiz, 1:1 (1967), 38–60 | Zbl

[15] Glazman I.M., Lyubich Yu.I., Konechnomernyi lineinyi analiz, Nauka, M., 1969 | MR | Zbl

[16] Sz.-Nagy B., Foias C., “Forme triangulaire d'une contraction et factorisation de la fonction caracteristique”, Acta Sci. Math., Szeged, 28 (1967), 201–212 | MR

[17] Ginzburg Yu.P., “Odna metrichna teorema pro povnotu sistemi skinchenomirnikh invar'antnikh pidprostoriv”, Mater. zv. nauk. konf. Odeskogo ped. in-ta za 1965 r., Odesa, 1967, 58

[18] Livshits M.S., “O spektralnom razlozhenii lineinykh nesamosopryazhennykh operatorov”, Matem. sb., 34 (1954), 145–199 | MR | Zbl

[19] Heins M., “On the Lindelof principle”, Ann. Math, 61:3 (1955), 440–473 | DOI | MR | Zbl