Linear differential equations on a Lie group
Funkcionalʹnyj analiz i ego priloženiâ, Tome 4 (1970) no. 1, pp. 52-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1970_4_1_a5,
     author = {S. G. Krein and A. M. Shikhvatov},
     title = {Linear differential equations on a {Lie} group},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {52--61},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1970_4_1_a5/}
}
TY  - JOUR
AU  - S. G. Krein
AU  - A. M. Shikhvatov
TI  - Linear differential equations on a Lie group
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1970
SP  - 52
EP  - 61
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1970_4_1_a5/
LA  - ru
ID  - FAA_1970_4_1_a5
ER  - 
%0 Journal Article
%A S. G. Krein
%A A. M. Shikhvatov
%T Linear differential equations on a Lie group
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1970
%P 52-61
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1970_4_1_a5/
%G ru
%F FAA_1970_4_1_a5
S. G. Krein; A. M. Shikhvatov. Linear differential equations on a Lie group. Funkcionalʹnyj analiz i ego priloženiâ, Tome 4 (1970) no. 1, pp. 52-61. http://geodesic.mathdoc.fr/item/FAA_1970_4_1_a5/

[1] Pontryagin L.S., Nepreryvnye gruppy, Gostekhizdat, M., 1954 | MR

[2] Krein S.G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR

[3] Gelfand I.M., “Ob odnoparametricheskikh gruppakh operatorov v normirovannom prostranstve”, DAN SSSR, 25:9 (1939), 711–716 | MR

[4] Khille E., Filipps R.S., Funktsionalnyi analiz i polugruppy, IL, M., 1962 | MR

[5] Nelson E., “Analiticheskie vektory”, Matematika, 6:3 (1962), 89–131

[6] Gording L., “Analiticheskie vektory v predstavleniyakh gruppy Li”, Matematika, 9:5 (1965), 78–94

[7] Garding L., “Note on continuous representations of Lie groups”, Proc. Nat. Acad. Sci. USA, 33 (1947), 331–332 | DOI | MR | Zbl

[8] Segal I.E., “A class of operators algebras which are determined by groups”, Duke Math. J., 18 (1951), 221–225 | DOI | MR

[9] De Leanw K., “On the adjoint semi-groups and some problems in the theory of approximation”, Math. Z., 73 (1960), 219–234 | DOI | MR