Bounded operators that commute with a contraction of class $C_{00}$ of unit rank of nonunitarity
Funkcionalʹnyj analiz i ego priloženiâ, Tome 3 (1969) no. 3, pp. 86-87
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{FAA_1969_3_3_a8,
author = {V. M. Adamyan and D. Z. Arov and M. G. Krein},
title = {Bounded operators that commute with a contraction of class $C_{00}$ of unit rank of nonunitarity},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {86--87},
year = {1969},
volume = {3},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_1969_3_3_a8/}
}
TY - JOUR
AU - V. M. Adamyan
AU - D. Z. Arov
AU - M. G. Krein
TI - Bounded operators that commute with a contraction of class $C_{00}$ of unit rank of nonunitarity
JO - Funkcionalʹnyj analiz i ego priloženiâ
PY - 1969
SP - 86
EP - 87
VL - 3
IS - 3
UR - http://geodesic.mathdoc.fr/item/FAA_1969_3_3_a8/
LA - ru
ID - FAA_1969_3_3_a8
ER -
%0 Journal Article
%A V. M. Adamyan
%A D. Z. Arov
%A M. G. Krein
%T Bounded operators that commute with a contraction of class $C_{00}$ of unit rank of nonunitarity
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1969
%P 86-87
%V 3
%N 3
%U http://geodesic.mathdoc.fr/item/FAA_1969_3_3_a8/
%G ru
%F FAA_1969_3_3_a8
V. M. Adamyan; D. Z. Arov; M. G. Krein. Bounded operators that commute with a contraction of class $C_{00}$ of unit rank of nonunitarity. Funkcionalʹnyj analiz i ego priloženiâ, Tome 3 (1969) no. 3, pp. 86-87. http://geodesic.mathdoc.fr/item/FAA_1969_3_3_a8/