Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1969_3_3_a8, author = {V. M. Adamyan and D. Z. Arov and M. G. Krein}, title = {Bounded operators that commute with a contraction of class $C_{00}$ of unit rank of nonunitarity}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {86--87}, publisher = {mathdoc}, volume = {3}, number = {3}, year = {1969}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1969_3_3_a8/} }
TY - JOUR AU - V. M. Adamyan AU - D. Z. Arov AU - M. G. Krein TI - Bounded operators that commute with a contraction of class $C_{00}$ of unit rank of nonunitarity JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1969 SP - 86 EP - 87 VL - 3 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_1969_3_3_a8/ LA - ru ID - FAA_1969_3_3_a8 ER -
%0 Journal Article %A V. M. Adamyan %A D. Z. Arov %A M. G. Krein %T Bounded operators that commute with a contraction of class $C_{00}$ of unit rank of nonunitarity %J Funkcionalʹnyj analiz i ego priloženiâ %D 1969 %P 86-87 %V 3 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_1969_3_3_a8/ %G ru %F FAA_1969_3_3_a8
V. M. Adamyan; D. Z. Arov; M. G. Krein. Bounded operators that commute with a contraction of class $C_{00}$ of unit rank of nonunitarity. Funkcionalʹnyj analiz i ego priloženiâ, Tome 3 (1969) no. 3, pp. 86-87. http://geodesic.mathdoc.fr/item/FAA_1969_3_3_a8/