Bounded operators that commute with a contraction of class $C_{00}$ of unit rank of nonunitarity
Funkcionalʹnyj analiz i ego priloženiâ, Tome 3 (1969) no. 3, pp. 86-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1969_3_3_a8,
     author = {V. M. Adamyan and D. Z. Arov and M. G. Krein},
     title = {Bounded operators that commute with a contraction of class $C_{00}$ of unit rank of nonunitarity},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {86--87},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1969_3_3_a8/}
}
TY  - JOUR
AU  - V. M. Adamyan
AU  - D. Z. Arov
AU  - M. G. Krein
TI  - Bounded operators that commute with a contraction of class $C_{00}$ of unit rank of nonunitarity
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1969
SP  - 86
EP  - 87
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1969_3_3_a8/
LA  - ru
ID  - FAA_1969_3_3_a8
ER  - 
%0 Journal Article
%A V. M. Adamyan
%A D. Z. Arov
%A M. G. Krein
%T Bounded operators that commute with a contraction of class $C_{00}$ of unit rank of nonunitarity
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1969
%P 86-87
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1969_3_3_a8/
%G ru
%F FAA_1969_3_3_a8
V. M. Adamyan; D. Z. Arov; M. G. Krein. Bounded operators that commute with a contraction of class $C_{00}$ of unit rank of nonunitarity. Funkcionalʹnyj analiz i ego priloženiâ, Tome 3 (1969) no. 3, pp. 86-87. http://geodesic.mathdoc.fr/item/FAA_1969_3_3_a8/