The three-dimensional Gauss algorithm is strongly convergent almost everywhere.
Experimental mathematics, Tome 11 (2002) no. 1, pp. 131-141.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Keywords: multidimensional continued fractions, Brun's algorithm, Jacobi-Perron algorithm, strong convergence, Lyapunov exponents
@article{EXMA_2002__11_1_50344,
     author = {Hardcastle, D.M.},
     title = {The three-dimensional {Gauss} algorithm is strongly convergent almost everywhere.},
     journal = {Experimental mathematics},
     pages = {131--141},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2002},
     zbl = {1022.11034},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EXMA_2002__11_1_50344/}
}
TY  - JOUR
AU  - Hardcastle, D.M.
TI  - The three-dimensional Gauss algorithm is strongly convergent almost everywhere.
JO  - Experimental mathematics
PY  - 2002
SP  - 131
EP  - 141
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EXMA_2002__11_1_50344/
LA  - en
ID  - EXMA_2002__11_1_50344
ER  - 
%0 Journal Article
%A Hardcastle, D.M.
%T The three-dimensional Gauss algorithm is strongly convergent almost everywhere.
%J Experimental mathematics
%D 2002
%P 131-141
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EXMA_2002__11_1_50344/
%G en
%F EXMA_2002__11_1_50344
Hardcastle, D.M. The three-dimensional Gauss algorithm is strongly convergent almost everywhere.. Experimental mathematics, Tome 11 (2002) no. 1, pp. 131-141. http://geodesic.mathdoc.fr/item/EXMA_2002__11_1_50344/