The function g(h) for which |A(G)|p>=p^h whenever |G|>=p^g(h) , G a finite P-group
Ευκλείδης Γ, Tome 29 (1991), pp. 27-44
Cet article a éte moissonné depuis la source Hellenic Digital Mathematics Library
@article{EUG_1991_29_a4,
author = {M. V. D. Burmester and Th. G. Exarhakos},
title = {The function g(h) for which {|A(G)|p>=p^h} whenever {|G|>=p^g(h)} , {G} a finite {P-group}},
journal = {E\ensuremath{\upsilon}\ensuremath{\kappa}\ensuremath{\lambda}\ensuremath{\varepsilon}\ensuremath{\acute\iota}\ensuremath{\delta}\ensuremath{\eta}\ensuremath{\varsigma} \ensuremath{\Gamma}},
pages = {27--44},
year = {1991},
volume = {29},
language = {gr},
url = {http://geodesic.mathdoc.fr/item/EUG_1991_29_a4/}
}
M. V. D. Burmester; Th. G. Exarhakos. The function g(h) for which |A(G)|p>=p^h whenever |G|>=p^g(h) , G a finite P-group. Ευκλείδης Γ, Tome 29 (1991), pp. 27-44. http://geodesic.mathdoc.fr/item/EUG_1991_29_a4/