Απόδειξη της : ν ανήκει Ν* συνεπάγεται 6/(ν^3 - ν)
Ευκλείδης Γ, Tome 5 (1984), p. 18
Cet article a éte moissonné depuis la source Hellenic Digital Mathematics Library
@article{EUG_1984_5_a9,
author = {A\ensuremath{\theta}\ensuremath{\eta}\ensuremath{\nu}\ensuremath{\acute\alpha} \ensuremath{\Gamma}\ensuremath{\iota}\ensuremath{\alpha}\ensuremath{\nu}\ensuremath{\nu}\ensuremath{\acute\alpha}\ensuremath{\tau}o\ensuremath{\upsilon}},
title = {A\ensuremath{\pi}\'{o}\ensuremath{\delta}\ensuremath{\varepsilon}\ensuremath{\iota}\ensuremath{\xi}\ensuremath{\eta} \ensuremath{\tau}\ensuremath{\eta}\ensuremath{\varsigma} : \ensuremath{\nu} \ensuremath{\alpha}\ensuremath{\nu}\ensuremath{\acute\eta}\ensuremath{\kappa}\ensuremath{\varepsilon}\ensuremath{\iota} {N*} \ensuremath{\sigma}\ensuremath{\upsilon}\ensuremath{\nu}\ensuremath{\varepsilon}\ensuremath{\pi}\ensuremath{\acute\alpha}\ensuremath{\gamma}\ensuremath{\varepsilon}\ensuremath{\tau}\ensuremath{\alpha}\ensuremath{\iota} 6/(\ensuremath{\nu}^3 - \ensuremath{\nu}) },
journal = {E\ensuremath{\upsilon}\ensuremath{\kappa}\ensuremath{\lambda}\ensuremath{\varepsilon}\ensuremath{\acute\iota}\ensuremath{\delta}\ensuremath{\eta}\ensuremath{\varsigma} \ensuremath{\Gamma}},
pages = {18},
year = {1984},
volume = {5},
language = {gr},
url = {http://geodesic.mathdoc.fr/item/EUG_1984_5_a9/}
}
Αθηνά Γιαννάτου. Απόδειξη της : ν ανήκει Ν* συνεπάγεται 6/(ν^3 - ν). Ευκλείδης Γ, Tome 5 (1984), p. 18. http://geodesic.mathdoc.fr/item/EUG_1984_5_a9/